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Chapter 9
Computer Arithmetic

Computer Organization and Architecture Arithmetic & Logic Unit

• Performs arithmetic and logic operations on 
data – everything that we think of as 
“computing.”

• Everything else in the computer is there to 
service this unit

• All ALUs handle integers
• Some may handle floating point (real) numbers
• May be separate FPU (math co-processor)
• FPU may be on separate chip (486DX +)

ALU Inputs and Outputs Integer Representation

• We have the smallest possible alphabet: the 
symbols 0 & 1 represent everything

• No minus sign
• No period
• Signed-Magnitude
• Two’s complement

Benefits of 2’s complement

• One representation of zero
• Arithmetic works easily (see later)
• Negating is fairly easy

— 3 = 00000011
— Boolean complement gives 11111100
— Add 1 to LSB 11111101

Geometric Depiction of Twos Complement 
Integers
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2’s complement negation

• “Taking the 2’s complement” (complement and 
add 1) is computing the arithmetic negation of 
a number

• Compute y = 0 – x 
— Or

• Compute y such that x + y = 0 

Addition and Subtraction
• For addition use normal binary addition 

— 0+0=sum 0 carry 0
— 0+1=sum 1 carry 0
— 1+1=sum 0 carry 1

• Monitor MSB for overflow
— Overflow cannot occur when adding 2 operands with the 

different signs
— If 2 operand have same sign and result has a different sign, 

overflow has occurred

• Subtraction: Take 2’s complement of subtrahend and 
add to minuend
— i.e. a - b = a + (-b)

• So we only need addition and complement circuits

Hardware for Addition and Subtraction Side note: Carry look-ahead

• Binary addition would seem to be dramatically 
slower for large registers
— consider 0111 + 0011
— carries propagate left-to-right
— So 64-bit addition would be 8 times slower than 8-

bit addition

• It is possible to build a circuit called a “carry 
look-ahead adder” that speeds up addition by 
eliminating the need to “ripple” carries 
through the word

Carry look-ahead

• Carry look-ahead is expensive
• If n is the number of bits in a ripple adder, the 

circuit complexity (number of gates) is O(n) 
• For full carry look-ahead, the complexity is 

O(n3)
• Complexity can be reduced by rippling smaller 

look-aheads: e.g., each 16 bit group is handled 
by four 4-bit adders and the 16-bit adders are 
rippled into a 64-bit adder

Multiplication

• A complex operation compared with addition 
and subtraction

• Many algorithms are used, esp. for large 
numbers

• Simple algorithm is the same long 
multiplication taught in grade school
— Compute partial product for each digit
— Add partial products
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Multiplication Example

• 1011   Multiplicand (11 dec)
• x 1101   Multiplier     (13 dec)
• 1011   Partial products
• 0000     Note: if multiplier bit is 1 copy
• 1011 multiplicand (place value)
• 1011 otherwise zero
• 10001111   Product (143 dec)
• Note: need double length result

Simplifications for Binary Arithmetic

• Partial products are easy to compute:
— If bit is 0, partial product is 0
— If bit is 1, partial product is multiplicand

• Can add each partial product as it is generated, 
so no storage is needed

• Binary multiplication of unsigned integers 
reduces to “shift and add”

Control logic and registers

• 3 n bit registers, 1 bit carry register CF
• Register set up

— Q register <- multiplier
— M register <- multiplicand
— A register <- 0
— CF <- 0

• CF for carries after addition
• Product will be 2n bits in A Q registers

Unsigned Binary Multiplication

Multiplication Algorithm

• Repeat n times:
— If Q0 = 1 Add M into A, store carry in CF
— Shift CF, A, Q right one bit so that: 

– An-1 <- CF
– Qn-1 <- A0

– Q0 is lost

• Note that during execution Q contains bits from 
both product and multiplier

Flowchart for Unsigned Binary Multiplication
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Execution of Example Two’s complement multiplication

• Shift and add does not work for two’s 
complement numbers

• Previous example as 4-bit 2’s complement: 
-5 (1011) * -3 (1101) = -113 (10001111)

• What is the problem?
— Partial products are 2n-bit products

When the multiplicand is negative

• Each addition of the negative multiplicand 
must be negative number with 2n bits

• Sign extend multiplicand into partial product

• Or sign extend both operands to double 
precision

• Not efficient

When the multiplier is negative

• When the multiplier (Q register) is negative, 
the bits of the operand do not correspond to 
shifts and adds needed 

• 1101 <->1*2^3 + 1*2^2 + 1*2^0 
= -(2^3 + 2^2 + 2^0) 

• But we need
-(2^1 + 2^0)

The obvious solution

• Convert multiplier and multiplicand to 
unsigned integers

• Multiply
• If original signs differed, negate result

• But there are more efficient ways

Fast multiplication 
• Consider the product 6234 * 99990

— We could do 4 single-digit multiplies and add partial sums

• Or we can express the product as 
6234 * (106 – 101 )

• In binary x * 00111100 can be expressed as 
x * (25 + 24 + 23 + 22) = x * 60

• We can reduce the number of operations to 2 by 
observing that 00111100 = 01000000 – 00000010 (64-4 = 
60)
— x * 00111100 = x * 26 – x * 22

— Each block of 1’s can be reduced to two operations
— In the worst case 01010101 we still have only 8 operations
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Booth’s Algorithm Registers and Setup

• 3 n bit registers, 1 bit register logically to the 
right of Q (denoted as Q-1)

• Register set up
— Q register <- multiplier
— Q-1 <- 0
— M register <- multiplicand
— A register <- 0
— Count <- n

• Product will be 2n bits in A Q registers

Booth’s Algorithm Control Logic
• Bits of the multiplier are scanned one at a a time (the 

current bit  Q0 )
• As bit is examined the bit to the right is considered 

also (the previous bit  Q-1 )
• Then:

00: Middle of a string of 0s, so no arithmetic operation.
01: End of a string of 1s, so add the multiplicand to the left half 

of the product (A).
10: Beginning of a string of 1s, so subtract the multiplicand from 

the left half of the product (A).
11: Middle of a string of 1s, so no arithmetic operation.

• Then shift A, Q, bit  Q-1 right one bit using an 
arithmetic shift

• In an arithmetic shift, the msb remains unchanged

Booth’s Algorithm Example of Booth’s Algorithm (7*3=21)

Example: -3 * 2 = -6 (-3 = 1101)
A Q Q-1 M C/P Comment
0000 1101 0 0010 Initial Values

1110 1101 0 0010 10 A <- A - 2 = -2
1111 0110 1 0010 >>1

0001 0110 1 0010 01 A <- A + 2 
0000 1011 0 0010 >>1

1110 1011 0 0010 01 A <- A - 2 = -2
1111 0101 1 0010 >>1

1111 1010 1 0010 11 >>1 A:Q = -6

Example: 6 * -1 = -6 (1111 = -1)
A Q Q-1 M C/P Comment
0000 1111 0 0110 Initial Values

1010 1111 1 0110 10 A <- A - 6 = -6
1101 0111 1 0110 >>1

1110 1011 1 0110 11 >>1

1111 0101 1 0110 11 >>1

1111 1010 1 0110 11 >>1 A:Q = -6
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Example: 3 * -2 = -6 (1110 = -2)
A Q Q-1 M C/P Comment
0000 0011 0 1110 Initial Values

0010 0011 0 1110 10 A <- A -(-2) = 2
0001 0001 1 1110 >> 1

0000 1000 1 1110 11 >> 1

1110 1000 1 1110 01 A <- A +(-2) = -2
1111 0100 0 1110 >>1

1111 1010 0 1110 00 >> 1 A:Q = -6

Division

• More complex than multiplication to implement 
(for computers as well as humans!)
— Some processors designed for embedded applications 

or digital signal processing lack a divide instruction

• Basically inverse of add and shift: shift and 
subtract 

• Similar to long division taught in grade school

001111

Unsigned Division In Principle

1011
00001101
10010011
1011
001110

1011

1011
100

Quotient

Dividend

Remainder

Partial
Remainders

Divisor

147 / 11 = 13 with remainder 4

Unsigned Division algorithm

• Using same registers (A,M,Q, count) as 
multiplication

• Results of division are quotient and remainder
— Q will hold the quotient
— A will hold the remainder

• Initial values
— Q <- 0
— A <- Dividend
— M <- Divisor
— Count <- n

Unsigned Division Flowchart Example
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Two’s complement division
• More difficult than unsigned division
• Algorithm:

1. M <- Divisor, A:Q <- dividend sign extended to 2n bits; for 
example 0111 -> 00000111 ; 1001-> 11111001
(note that 0111 = 7 and 1001 = -3)

2. Shift A:Q left 1 bit
3. If M and A have same signs, perform A <- A-M otherwise 

perform A <- A + M
4. The preceding operation succeeds if the sign of A is 

unchanged
– If successful, or (A==0 and Q==0) set Q0 <- 1
– If not successful, and (A!=0 or Q!=0) set Q0 <- 0 and restore the 

previous value of A
5. Repeat steps 2,3,4 for n bit positions in Q
6. Remainder is in A. If the signs of the divisor and dividend were

the same then the quotient is in Q, otherwise the correct 
quotient is 0-Q

2’s complement division examples

2’s complement division examples 2’s complement remainders

• 7 /  3   =  2  R  1
• 7 / -3   = -2  R  1
• -7 /  3   = -2  R -1
• -7 / -3   =  2  R -1
• Here the remainder is defined as: 

Dividend = Quotient * Divisor + Remainder

IEEE-754 Floating Point Numbers

• Format was discussed earlier in class
• Before IEEE-754 each family of computers had 

proprietary format: Cray,Vax, IBM
• Some Cray and IBM machines still use these formats
• Most are similar to IEEE formats but vary in details (bits 

in exponent or mantissa):
— IBM Base 16 exponent
— Vax, Cray: bias differs from IEEE

• Cannot make precise translations from one format to 
another

• Older binary scientific data not easily accessible

IEEE 754

• +/- 1.significand x 2exponent

• Standard for floating point storage
• 32 and 64 bit standards
• 8 and 11 bit exponent respectively
• Extended formats (both mantissa and 

exponent) for intermediate results
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Floating Point Examples FP Ranges

• For a 32 bit number
— 8 bit exponent 
— +/- 2256  1.5 x 1077

• Accuracy
— The effect of changing lsb of mantissa
— 23 bit mantissa 2-23  1.2 x 10-7

— About 6 decimal places

Expressible Numbers Density of Floating Point Numbers

•Note that there is a tradeoff between density 
and precision

For a floating point representation of n bits, if 
we increase the precision by using more bits 
in the mantissa then then we decrease the 
range

If we increase the range by using more bits 
for the exponent then we decrease the density 
and precision

Floating Point Arithmetic Operations FP Arithmetic +/-

• Addition and subtraction are more complex 
than multiplication and division

• Need to align mantissas
• Algorithm:

— Check for zeros
— Align significands (adjusting exponents)
— Add or subtract significands
— Normalize result
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FP Addition & Subtraction Flowchart
for Z <- X + Y  and  Z <- X - Y Zero check

• Addition and subtraction identical except for 
sign change

• For subtraction, just negate subtrahend 
(Y in Z = X-Y) then compute Z = X+Y

• If either operand is 0 report the other as the 
result

Significand Alignment

• Manipulate numbers so that both exponents are 
equal

• Shift number with smaller exponent to the 
right – if bits are lost they will be less 
significant

Repeat
Shift mantissa right 1 bit
Add 1 to exponent

Until exponents are equal

• If mantissa becomes 0 report other number as 
result

Addition

• Add mantissas together, taking sign into 
account

• May result in 0 if signs differ
• Can result in mantissa overflow by 1 bit (carry)

— Shift mantissa right and increment exponent
— Report error if exponent overflow

Normalization

• While (MSB of mantissa == 0)
— Shift mantissa left one bit
— Decrement exponent
— Check for exponent underflow

• Round mantissa 

FP Arithmetic Multiplication and Division 

• Simpler processes than addition and 
subtraction
— Check for zero
— Add/subtract exponents 
— Multiply/divide significands (watch sign)
— Normalize
— Round
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Floating Point Multiplication Multiplication
• If either operand is 0 report 0
• Add exponents

— Because addition doubles bias, first subtract the bias from one 
exponent

• If exponent underflow or overflow, report error
— Underflow may be reported as 0 and overflow as infinity

• Multiply mantissas as if they were integers (similar to 
2’s comp mult.)
— Note product is twice as long as factors

• Normalize and round 
— Same process as addition
— Could result in exponent underflow

Floating Point Division Division
• If divisor is 0 report error or infinity; dividend 0 then 

result is 0
• Subtract divisor exponent from dividend exp.

— Removes bias so add bias back

• If exponent underflow or overflow, report error
— Underflow may be reported as 0 and overflow as infinity

• Divide mantissas as if they were integers (similar to 2’s 
comp mult.)
— Note product is twice as long as factors

• Normalize and round 
— Same process as addition
— Could result in exponent underflow

IEEE Standard for Binary Arithmetic

• Specifies practices and procedures beyond 
format specification
— Guard bits (intermediate formats)
— Rounding
— Treatment of infinities
— Quiet and signaling NaNs
— Denormalized numbers

Precision considerations

• Floating point arithmetic is inherently inexact 
except where only numbers composed of sums 
of powers of 2 are used

• To preserve maximum precision there are two 
main techniques:
— Guard bits
— Rounding rules
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Guard bits

• Length of FPU registers > bits in mantissa
• Allows some preservation of precision when 

— aligning exponents for addition
— Multiplying or dividing significands

• We have seen that results of arithmetic can 
vary when intermediate stores to memory are 
made in the course of a computation

Rounding

• Conventional banker’s rounding (round up if 
0.5) has a slight bias toward the larger number

• To remove this bias use round-to-even:
1.5 -> 2
2.5 -> 2
3.5 -> 4
4.5 -> 4
Etc

IEEE Rounding

• Four types are defined:
— Round to nearest (round to even)
— Round to + infinity
— Round to – infinity
— Round to 0 

Round to nearest

• If extra bits beyond mantissa are 100..1.. then 
round up

• If extra bits are 01… then truncate
• Special case: 10000…0

— Round up if last representable bit is 1 
— Truncate if last representable bit is 0

Round to +/- infinity

• Useful for interval arithmetic
— Result of fp computation is expressed as an interval 

with upper and lower endpoints
— Width of interval gives measure of precision
— In numerical analysis algorithms are designed to 

minimize width of interval

Round to 0 

• Simple truncation, obvious bias
• May be needed when explicitly rounding 

following operations with transcendental 
functions 
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Infinities

• Infinity treated as limiting case for real 
arithmetic

• Most arithmetic operations involving infinities 
produce infinity

Quiet and Signaling NaNs

• NaN = Not a Number
• Signaling NaN causes invalid operation 

exception if used as operand
• Quiet NaN can propagate through arithmetic 

operations without raising an exception
• Signaling NaNs are useful for initial values of 

uninitialized variables
• Actual representation is implementation 

(processor) specific

Quiet NaNs Denormalized Numbers

• Handle exponent underflow
• Provide values in the “hole around 0”

Unnormalized Numbers

• Denormalized numbers have fewer bits of 
precision than normal numbers

• When an operation is performed with a 
denormalized number and a normal number, 
the result is called an “unnormal” number

• Precision is unknown
• FPU can be programmed to raise an exception 

for unnormal computations


