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Basic Concepts 

In this unit, we are going to learn distinction between 

problems that can be solved by a polynomial time and 

problems for which no polynomial time algorithm is known. 

It is unexplained phenomenon that for many of the problems 

we know and study, the best algorithm for their solutions have 

computing times that cluster into two groups. 

The first group consists of problems whose solution times are 

bounded by polynomials of small degree like Linear Search 

𝜪(𝒏), Binary Search 𝜪(𝐥𝐨𝐠𝒏), Bubble/Insertion sorting 𝜪(𝒏𝟐), 

Merge Sorting 𝜪(𝒏 𝒍𝒐𝒈𝒏), Matrix Multiplication 𝜪(𝒏𝟑) etc. 

The second group is made up of problems whose best-known 

algorithms are nonpolynomial (exponential) like Travelling 

Salesperson 𝜪 𝒏𝟐𝟐𝒏  and 0/1 Knapsack Problem  𝜪(𝟐𝒏), 

Sum of Subsets 𝜪 𝟐𝒏  , Graph coloring 𝜪 𝟐𝒏  , Hamiltonian 

Cycle 𝜪 𝒏𝟐𝟐𝒏 , 𝒆𝒕𝒄. 



Basic Concepts 

In the quest to develop efficient algorithms, no one has been 

able to develop a polynomial time algorithm for any problem 

in second group. 

This is very important because algorithms whose computing 

times are greater than polynomial (specially time is 

exponential) very quickly require such vast amount of time to 

execute that even moderate-size problems cannot be solved. 

Here we are going to show that many of the problems for 

which there are no known polynomial time algorithms are 

computationally related. 

In fact, we establish two classes of problems, namely 

𝑵𝑷 −𝑯𝒂𝒓𝒅 𝒂𝒏𝒅 𝑵𝑷 − 𝑪𝒐𝒎𝒑𝒍𝒆𝒕𝒆. 



Basic Concepts 

A problem that is 𝑵𝑷 − 𝑪𝒐𝒎𝒑𝒍𝒆𝒕𝒆 has the property that it can 

be solved in polynomial time if and only if all other 𝑵𝑷 −

𝑪𝒐𝒎𝒑𝒍𝒆𝒕𝒆 problems can also be solved in polynomial time. 

If an 𝑵𝑷 −𝑯𝒂𝒓𝒅 problem can be solved in polynomial time, 

then all 𝑵𝑷 − 𝑪𝒐𝒎𝒑𝒍𝒆𝒕𝒆 problems can be solved in 

polynomial time. 

All 𝑵𝑷 − 𝑪𝒐𝒎𝒑𝒍𝒆𝒕𝒆 problems are 𝑵𝑷 −𝑯𝒂𝒓𝒅, but some 

𝑵𝑷 −𝑯𝒂𝒓𝒅 problems are not known to be 𝑵𝑷 − 𝑪𝒐𝒎𝒑𝒍𝒆𝒕𝒆. 



Nondeterministic Algorithms 

Generally, algorithms has the property that the result of every 

operation is uniquely defined. 

Algorithms with this property are called Deterministic 

Algorithms. 

Such algorithms represent the programs which can be 

executed on a computer. 

In a theoretical framework we can remove this restriction on 

the outcome of every operation. 

We can allow algorithms to contain operations whose 

outcomes are not uniquely defined but are limited to specified 

sets of possibilities. 

The machine executing such operations is allowed to choose 

any one of these outcomes subject to termination condition to 

be defined later. 



Nondeterministic Algorithms 

These types of Algorithms are called Nondeterministic 

Algorithms. 

To specify such algorithms, we introduce three new functions: 

1. Choice(S) – arbitrarily chooses one of the elements of set S. 

2. Failure( ) – indicates an unsuccessful completion. 

3. Success( ) – indicates an successful completion.  

The assignment statement 𝒙 ≔ 𝑪𝒉𝒐𝒊𝒄𝒆(𝟏, 𝒏) could result in 𝒙 

being assigned any one of the integers in the range ,𝟏, 𝒏-. 

Whenever there is a set of choices that leads to a successful 

completion, then one such set of choices is always made and 

the algorithm terminates successfully. 

A nondeterministic algorithm terminates unsuccessfully if 

and only if there exists no set of choices leading to a success 

signal. 



Nondeterministic Algorithms 

The computing time for Choice, Success and Failure are 

taken to be 𝜪(𝟏). 

A machine capable of executing nondeterministic algorithm is 

called a nondeterministic machine. 

Although nondeterministic machine do not exists in practice, 

we see that they provide strong intuitive reasons to conclude 

that certain problems cannot be solved fast deterministic 

algorithms. 

Example 1 - Nondeterministic Search (NSearch): Consider 

the problem of searching for an element 𝒙 in a given set of 

elements 𝑨 𝟏: 𝒏 , 𝒏 ≥ 𝟏. 

We have to find an index 𝒋 such that 𝑨 𝒋 = 𝒙 𝒐𝒓 𝒋 = 𝟎 𝒊𝒇 𝒙 is 

not in A. 



Nondeterministic Algorithms - Example 
A nondeterministic algorithm for this is 

1. 𝑨𝒍𝒈𝒐𝒓𝒊𝒕𝒉𝒎 𝑵𝑺𝒆𝒂𝒓𝒄𝒉 (𝑨𝒎 𝒏, 𝒙) 

2. * 

3. 𝒋 ≔ 𝑪𝒉𝒐𝒊𝒄𝒆(𝟏, 𝒏); // 𝒋 𝒊𝒔 𝒂𝒔𝒔𝒊𝒈𝒏𝒆𝒅 𝒗𝒂𝒍𝒖𝒆 𝒃𝒆𝒕𝒘𝒆𝒆𝒏 𝟏 𝒂𝒏𝒅 𝒏 

4.    𝒊𝒇 𝑨,𝒋- = 𝒙 𝒕𝒉𝒆𝒏    

5.    // 𝑩𝒚 𝒍𝒖𝒄𝒌, 𝒊𝒇 𝒋 𝒊𝒔 𝒕𝒉𝒆 𝒊𝒏𝒅𝒆𝒙 𝒐𝒇 𝒐𝒖𝒓 𝒔𝒆𝒂𝒓𝒄𝒉𝒊𝒏𝒈 𝒆𝒍𝒆𝒎𝒆𝒏𝒕 𝒙 

6.    * 

7.      𝒘𝒓𝒊𝒕𝒆 (𝒋);    //

 𝑻𝒉𝒆𝒏 𝒅𝒊𝒔𝒑𝒍𝒂𝒚 𝒕𝒉𝒆 𝒑𝒐𝒔𝒊𝒕𝒊𝒐𝒏 𝒐𝒇 𝒕𝒉𝒆 𝒆𝒍𝒆𝒎𝒆𝒏𝒕 

8.       𝑺𝒖𝒄𝒄𝒆𝒔𝒔( );            // 𝑵𝒐𝒏 − 𝒅𝒆𝒕𝒆𝒓𝒎𝒊𝒏𝒊𝒔𝒕𝒊𝒄 𝒂𝒍𝒈𝒐𝒓𝒊𝒕𝒉𝒎 𝒊𝒔  

9.    // 𝒔𝒖𝒄𝒄𝒆𝒔𝒔𝒇𝒖𝒍𝒍𝒚 𝒆𝒙𝒆𝒄𝒖𝒕𝒆𝒅 & 𝒕𝒆𝒓𝒎𝒊𝒏𝒂𝒕𝒆𝒔 

10.    + 

11.       𝒘𝒓𝒊𝒕𝒆 (𝟎);            // 𝑻𝒉𝒆𝒏 𝒅𝒊𝒔𝒑𝒍𝒂𝒚 𝒕𝒉𝒆 𝟎 𝒂𝒔 𝒑𝒐𝒔𝒊𝒕𝒊𝒐𝒏 𝒐𝒇  

12.      // 𝒕𝒉𝒆 𝒆𝒍𝒆𝒎𝒆𝒏𝒕 𝒊𝒏𝒅𝒊𝒄𝒂𝒕𝒊𝒏𝒈 𝒇𝒂𝒊𝒍𝒖𝒓𝒆.  

13.       𝑭𝒂𝒊𝒍𝒖𝒓𝒆( );          // 𝑵𝒐𝒏 − 𝒅𝒆𝒕𝒆𝒓𝒎𝒊𝒏𝒊𝒔𝒕𝒊𝒄 𝒂𝒍𝒈𝒐𝒓𝒊𝒕𝒉𝒎 𝒊𝒔 

14.     // 𝒇𝒂𝒊𝒍𝒆𝒅 𝒂𝒏𝒅 𝒕𝒆𝒓𝒎𝒊𝒏𝒂𝒕𝒆𝒔  

15. + 



Nondeterministic Algorithms - Example From the way of a nondeterministic computation is defined, it 

follows that the number 0 can be output if and only if there is 

no 𝒋 𝒔𝒖𝒄𝒉 𝒕𝒉𝒂𝒕 𝑨 𝒋 = 𝒙. 

Search Algorithm is of nondeterministic complexity 𝜪(𝟏). 

Note that since A is not ordered, every deterministic search 

algorithm is of complexity Ω 𝒏 . 

 

Example 2 - Nondeterministic Sorting (NSort) : Let 

𝑨 𝒊 , 𝟏 ≤ 𝒊 ≤ 𝒏, be an unsorted array of positive integers. The 

nondeterministic algorithm 𝑵𝑺𝒐𝒓𝒕 𝑨, 𝒏  sorts the numbers 

into increasing order and then output them. 

An auxiliary array 𝑩,𝟏: 𝒏- is used for convenience. 

The time complexity is 𝜪(𝒏). 

Recall that all deterministic sorting algorithms must have a 

complexity of Ω 𝒏 𝒍𝒐𝒈 𝒏 . 



Nondeterministic Algorithms - Example 
A nondeterministic algorithm for this sorting is 

1. 𝑨𝒍𝒈𝒐𝒓𝒊𝒕𝒉𝒎 𝑵𝑺𝒐𝒓𝒕 𝑨, 𝒏  

2. // 𝑺𝒐𝒓𝒕 𝒏 𝒑𝒐𝒔𝒊𝒕𝒊𝒗𝒆 𝒊𝒏𝒕𝒆𝒈𝒆𝒓𝒔. 

3. * 

4.    𝒇𝒐𝒓 𝒊 ≔ 𝟏 𝒕𝒐 𝒏 𝒅𝒐     𝑩 𝒊 ≔ 𝟎; // Initialize array B[ ] with 0 

5.    𝒇𝒐𝒓 𝒊 ≔ 𝟏 𝒕𝒐 𝒏 𝒅𝒐  

6.   * 

7.     𝒋 ≔ 𝑪𝒉𝒐𝒊𝒄𝒆(𝟏, 𝒏);  

8. // 𝒋 𝒊𝒔 𝒂𝒔𝒔𝒊𝒈𝒏𝒆𝒅 𝒂 𝒗𝒂𝒍𝒖𝒆 𝒃𝒆𝒕𝒘𝒆𝒆𝒏 𝟏 𝒂𝒏𝒅 𝒏  

9.    𝒊𝒇 𝑩 𝒋  ≠ 𝟎  𝒕𝒉𝒆𝒏 

10.     // 𝒊𝒇 𝒋 𝒗𝒂𝒍𝒖𝒆 𝒊𝒔 𝒂𝒍𝒓𝒆𝒂𝒅𝒚 𝒄𝒉𝒐𝒔𝒆𝒏 𝒗𝒂𝒍𝒖𝒆, 𝒕𝒉𝒆𝒏 𝒇𝒂𝒊𝒍𝒖𝒓𝒆 

11.   𝑭𝒂𝒊𝒍𝒖𝒓𝒆  ; 

12.       𝑩 𝒋 ≔ 𝑨,𝒊-;   

13.    // 𝑨𝒔𝒔𝒊𝒈𝒏 𝑩,𝒋- 𝒂𝒔 𝒏𝒆𝒙𝒕 𝒆𝒍𝒆𝒎𝒆𝒏𝒕 𝒇𝒓𝒐𝒎 𝒂𝒓𝒓𝒂𝒚 𝑨, 𝑨,𝒊- 

14.    + 



Nondeterministic Algorithms - Example 
15.    𝒇𝒐𝒓 𝒊 ≔ 𝟏 𝒕𝒐 𝒏 − 𝟏 𝒅𝒐  // 𝑽𝒆𝒓𝒊𝒇𝒚 𝒕𝒉𝒆 𝒔𝒐𝒓𝒕 𝒐𝒓𝒅𝒆𝒓. 

16.        𝒊𝒇 𝑩 𝒊 > 𝑩 𝒊 + 𝟏   𝒕𝒉𝒆𝒏  

17.     // 𝑰𝒇 𝒆𝒍𝒆𝒎𝒆𝒏𝒕𝒔 𝒄𝒉𝒐𝒔𝒆𝒏 𝒏𝒐𝒕 𝒊𝒏 𝒄𝒐𝒓𝒓𝒆𝒄𝒕 𝒔𝒐𝒓𝒕𝒆𝒅 𝒐𝒓𝒅𝒆𝒓   

18.    𝑭𝒂𝒊𝒍𝒖𝒓𝒆  ;  // 𝑨𝒍𝒈𝒐𝒓𝒊𝒕𝒉𝒎 𝒖𝒏𝒔𝒖𝒄𝒄𝒆𝒔𝒔𝒇𝒖𝒍𝒍𝒚 𝒕𝒆𝒓𝒎𝒊𝒏𝒂𝒕𝒆𝒔 

19.       𝒘𝒓𝒊𝒕𝒆 𝑩,𝟏: 𝒏- ;         // 𝑰𝒇 𝒆𝒍𝒆𝒎𝒆𝒏𝒕𝒔 𝒂𝒓𝒆 𝒃𝒚 𝒍𝒖𝒄𝒌,  

20.     // 𝒄𝒉𝒐𝒔𝒆𝒏 𝒊𝒏 𝒄𝒐𝒓𝒓𝒆𝒄𝒕 𝒔𝒐𝒓𝒕𝒆𝒅 𝒐𝒓𝒅𝒆𝒓, 𝒕𝒉𝒆𝒏 𝒅𝒊𝒔𝒑𝒍𝒂𝒚.      

21.       𝑺𝒖𝒄𝒄𝒆𝒔𝒔  ;   // 𝑨𝒍𝒈𝒐𝒓𝒊𝒕𝒉𝒎 𝒔𝒖𝒄𝒄𝒆𝒔𝒔𝒇𝒖𝒍𝒍𝒚 𝒕𝒆𝒓𝒎𝒊𝒏𝒂𝒕𝒆𝒔 

22. + 

𝑬𝒙𝒂𝒎𝒑𝒍𝒆:  𝒏 = 𝟒        𝑨    =  *𝟓, 𝟗, 𝟕, 𝟐+ 

𝑺𝒖𝒄𝒄𝒆𝒔𝒔𝒇𝒖𝒍 𝑪𝒂𝒔𝒆 ∶  𝑹𝒂𝒏𝒅𝒐𝒎𝒍𝒚 𝒄𝒉𝒐𝒐𝒔𝒆    𝒋 =  𝟐, 𝟒, 𝟑, 𝟏  

𝑩,𝟐- = 𝑨,𝟏- =  𝟓 

𝑩,𝟒- = 𝑨,𝟐- = 𝟗 

𝑩,𝟑- = 𝑨,𝟑- = 𝟕 

𝑩,𝟏- = 𝑨,𝟒- = 𝟐 

𝑫𝒊𝒔𝒑𝒍𝒂𝒚 𝑩    = * 𝟐, 𝟓, 𝟕, 𝟗+ 

 

 



Nondeterministic Algorithms - Example 
Example 3 - Nondeterministic 0/1 Knapsack Problem : 

 

1. 𝑨𝒍𝒈𝒐𝒓𝒊𝒕𝒉𝒎 𝑵𝑲𝑷 𝒑,𝒘, 𝒏,𝒎, 𝒓, 𝒙  

2. * 

3.    𝑾 ≔ 𝟎;    𝑷 ≔ 𝟎; // 𝑵𝒐 𝒐𝒃𝒋𝒆𝒄𝒕𝒔 𝒂𝒓𝒆 𝒄𝒉𝒐𝒔𝒆𝒏 𝒚𝒆𝒕 

4.    𝒇𝒐𝒓 𝒊 ≔ 𝟏 𝒕𝒐 𝒏 𝒅𝒐 

5.   * 

6.       𝒙 𝒊 ≔ 𝑪𝒉𝒐𝒊𝒄𝒆(𝟎, 𝟏); 

7.   // 𝑶𝒃𝒋𝒆𝒄𝒕 𝒊, 𝒊𝒔 𝒓𝒂𝒏𝒅𝒐𝒎𝒍𝒚 𝒅𝒆𝒄𝒊𝒅𝒆𝒅 𝒕𝒐 𝒄𝒉𝒐𝒔𝒆 𝒐𝒓 𝒍𝒆𝒂𝒗𝒆 

8.       𝑾 ≔ 𝑾+ 𝒙 𝒊 ∗ 𝒘 𝒊 ; 

9. // 𝑰𝒇 𝑶𝒃𝒋𝒆𝒄𝒕 𝒊 𝒊𝒔 𝒄𝒉𝒐𝒔𝒆𝒏, 𝒕𝒉𝒆𝒏 𝒂𝒅𝒅 𝒊𝒕𝒔 𝒘𝒆𝒊𝒈𝒉𝒕, 𝒆𝒍𝒔𝒆 𝒂𝒅𝒅 𝟎 

10.       𝑷 ≔ 𝑷 + 𝒙 𝒊 ∗ 𝒑 𝒊 ; // 𝒔𝒊𝒎𝒊𝒍𝒂𝒓𝒍𝒚, 𝑰𝒇 𝑶𝒃𝒋𝒆𝒄𝒕 𝒊 𝒊𝒔  

11.     // 𝒄𝒉𝒐𝒔𝒆𝒏, 𝒕𝒉𝒆𝒏 𝒂𝒅𝒅 𝒊𝒕𝒔 𝒑𝒓𝒐𝒇𝒊𝒕, 𝒆𝒍𝒔𝒆 𝒂𝒅𝒅 𝟎. 

12.    + 



Nondeterministic Algorithms - Example 

13.          𝒊𝒇 𝑾 > 𝒎  𝒐𝒓 𝑷 < 𝒓  𝒕𝒉𝒆𝒏 

14. //𝑰𝒇 𝒔𝒆𝒍𝒆𝒄𝒕𝒆𝒅 𝒐𝒃𝒋𝒆𝒄𝒕𝒔 𝒘𝒆𝒊𝒈𝒉𝒕 𝒊𝒔 𝒎𝒐𝒓𝒆 𝒕𝒉𝒂𝒏 𝑲𝒏𝒂𝒑𝒔𝒂𝒄𝒌  

15. //𝒄𝒂𝒑𝒂𝒄𝒊𝒕𝒚 𝒐𝒓 𝒔𝒆𝒍𝒆𝒄𝒕𝒆𝒅 𝒐𝒃𝒋𝒆𝒄𝒕𝒔 𝒘𝒐𝒏′𝒕 𝒈𝒊𝒗𝒆 𝒖𝒔  

16. //𝒎𝒂𝒙𝒊𝒎𝒖𝒎 𝒑𝒓𝒐𝒇𝒊𝒕  𝒓. 

17.      𝑭𝒂𝒊𝒍𝒖𝒓𝒆  ; 

18. // 𝑨𝒍𝒈𝒐𝒓𝒊𝒕𝒉𝒎 𝒖𝒏𝒔𝒖𝒄𝒄𝒆𝒔𝒔𝒇𝒖𝒍𝒍𝒚 𝒕𝒆𝒓𝒎𝒊𝒏𝒂𝒕𝒆𝒔. 

19.           𝒆𝒍𝒔𝒆   𝑺𝒖𝒄𝒄𝒆𝒔𝒔  ; 

20.  // 𝑶𝒕𝒉𝒆𝒓𝒘𝒊𝒔𝒆 𝑨𝒍𝒈𝒐𝒓𝒊𝒕𝒉𝒎 𝒔𝒖𝒄𝒄𝒆𝒔𝒔𝒇𝒖𝒍𝒍𝒚 𝒕𝒆𝒓𝒎𝒊𝒏𝒂𝒕𝒆𝒔. 

21. + 

 

The time complexity is 𝜪(𝒏). 

If q is the input length using binary representation, the time is 

𝜪(𝒒). 



NP-Hard and NP-Complete Classes 

Definition 𝑷, 𝑵𝑷, 𝑵𝑷 − 𝑯𝒂𝒓𝒅 𝒂𝒏𝒅 𝑵𝑷 − 𝑪𝒐𝒎𝒑𝒍𝒆𝒕𝒆 

In measuring the complexity of an algorithm, we use the input 

length as parameter. 

An algorithm 𝑨 𝒊𝒔 𝒐𝒇 𝑷𝒐𝒍𝒚𝒏𝒐𝒎𝒊𝒂𝒍 𝑪𝒐𝒎𝒑𝒍𝒆𝒙𝒊𝒕𝒚 if there exists 

a polynomial 𝒑( ) such that the computing time of 

𝑨 𝒊𝒔 𝜪(𝒑 𝒏 ) for every input of size 𝒏. 

P is the set of all decision problems solvable by deterministic 

algorithms in polynomial time. 

NP is the set of all decision problems verifiable by 

Nondeterministic Algorithms in polynomial time.  

If a problem & solution is given, algorithm should be able to 

tell correct or incorrect in polynomial time. 

Since deterministic algorithms are just a special case of 

nondeterministic, we conclude that 𝑷 ⊆ 𝑵𝑷. 

 



A problem is 𝑵𝑷 −𝑯𝒂𝒓𝒅, if any problem (in NP) can be 

reduced to NP Problem in polynomial time. 

A problem is 𝑵𝑷 − 𝑪𝒐𝒎𝒑𝒍𝒆𝒕𝒆, if any problem (in NP) can be 

reduced to it in polynomial time and it is also in NP. 

 

 

 

 

 

 

This means, the set of 𝑵𝑷 − 𝑪𝒐𝒎𝒑𝒍𝒆𝒕𝒆 problems is the set 

formed by intersect of 𝑵𝑷 𝒂𝒏𝒅 𝑵𝑷 −𝑯𝒂𝒓𝒅. 

The main ambiguity in computer science field is whether 

𝑷 = 𝑵𝑷 𝒐𝒓 𝑷 ≠ 𝑵𝑷. 

𝑵𝑷 −𝑯𝒂𝒓𝒅 

𝑵𝑷 − 𝑪𝒐𝒎𝒑𝒍𝒆𝒕𝒆 
𝑵𝑷 

𝑷 

NP-Hard and NP-Complete Classes 



It is possible that for all problems in NP, there exists 

polynomial time deterministic algorithms that have remained 

undiscovered? 

This seems unlikely, at least because of the tremendous effort 

that has already been extended by so many people on these 

problems. 

A proof that 𝑷 ≠ 𝑵𝑷 is just as elusive and seems to require as 

yet undiscovered techniques. 

But as with many famous unsolved problems, they serve to 

generate other useful results, and the question of whether 

𝑵𝑷 ⊆ 𝑷 is no exception. 

The figure displays the relationship between 𝑷  

and 𝑵𝑷 assuming 𝑷 ≠ 𝑵𝑷. 

NP-Hard and NP-Complete Classes 

𝑵𝑷 

𝑷 



S. Cook formulated the following question : Is there any single 

problem in 𝑵𝑷 such that if we showed it to be in P, then that 

would imply that 𝑷 = 𝑵𝑷? 

Cook answered his own question in the affirmative with the 

following theorem, known as Cook’s Theorem. 

Cook’s Theorem : Satisfiability is in 𝑷 if and only if 𝑷 = 𝑵𝑷 

𝑵𝑷 −𝑯𝒂𝒓𝒅 𝒂𝒏𝒅 𝑵𝑷 − 𝑪𝒐𝒎𝒑𝒍𝒆𝒕𝒆 : A Problem L is in 

𝑵𝑷 −𝑯𝒂𝒓𝒅, if and only if satisfiability reduces to L 

(satisfiability ∝ 𝑳) 

 A problem L is 𝑵𝑷 − 𝑪𝒐𝒎𝒑𝒍𝒆𝒕𝒆 if and only if L is 𝑵𝑷 −𝑯𝒂𝒓𝒅 

and 𝑳 ∈ 𝑵𝑷. 

The satisfiability problem is determine whether a formula is 

true for some assignment of truth values to the variables. 

 

Cook’s Theorem 



Satisfiability : Nondeterministic approach 

Consider a problem with 4 variables 𝒙𝟏, 𝒙𝟐, 𝒙𝟑, 𝒂𝒏𝒅 𝒙𝟒 

 Let conjunctive normal form of the problem is 

𝑬 = 𝒙𝟏 ∨ 𝒙 𝟑  ∧ 𝒙 𝟐  ∨ 𝒙𝟑 ∨ 𝒙 𝟒  ∧ (𝒙𝟐 ∨ 𝒙 𝟒) 

This function E, will be true if and only if every ax term is true. 

The expression E is valid only when if it is true for all true 

values of its variables 𝒙𝟏, 𝒙𝟐, 𝒙𝟑, 𝒂𝒏𝒅 𝒙𝟒. 

This can be written using Nondeterministic Algorithm 

Cook’s Theorem 



Nondeterministic Satisfiability Algorithm 
Nondeterministic Satisfiability Algorithm : 

1. 𝑨𝒍𝒈𝒐𝒓𝒊𝒕𝒉𝒎 𝑬𝒗𝒂𝒍 𝑬, 𝒏  

2. //𝑫𝒆𝒕𝒆𝒓𝒎𝒊𝒏𝒆 𝒘𝒉𝒆𝒕𝒉𝒆𝒓 𝒕𝒉𝒆 𝒑𝒓𝒐𝒑𝒐𝒔𝒊𝒕𝒊𝒐𝒏𝒂𝒍 𝒇𝒐𝒓𝒎𝒖𝒍𝒂 𝑬 

3. //𝒊𝒔 𝑺𝒂𝒕𝒊𝒔𝒇𝒊𝒂𝒃𝒍𝒆  𝒕𝒉𝒆 𝒗𝒂𝒓𝒊𝒂𝒃𝒍𝒆𝒔 𝒂𝒓𝒆  𝒙𝟏, 𝒙𝟐,  𝒙𝟑, … . , 𝒙𝒏. 

4. * 

5.      𝒇𝒐𝒓 𝒊 ≔ 𝟏 𝒕𝒐 𝒏 𝒅𝒐   

6.      // 𝑪𝒉𝒐𝒐𝒔𝒆 𝒂 𝒕𝒓𝒖𝒕𝒉 𝒗𝒂𝒍𝒖𝒆 𝒂𝒔𝒔𝒊𝒈𝒏𝒎𝒆𝒏𝒕. 

7.         𝒙 𝒊 ≔ 𝑪𝒉𝒐𝒊𝒄𝒆(𝒇𝒂𝒍𝒔𝒆, 𝒕𝒓𝒖𝒆); 

8.   // 𝑽𝒂𝒓𝒊𝒂𝒃𝒍𝒆 𝒙,𝒊-, 𝒊𝒔 𝒓𝒂𝒏𝒅𝒐𝒎𝒍𝒚 𝒄𝒉𝒐𝒔𝒆𝒏 𝟎 𝒐𝒓 𝟏 

9.    𝒊𝒇 𝑬 𝒙𝟏, 𝒙𝟐,  𝒙𝟑, … . , 𝒙𝒏 = 𝟏  𝒕𝒉𝒆𝒏 // 𝑰𝒇 𝒄𝒉𝒐𝒔𝒆𝒏 𝒗𝒂𝒍𝒖𝒆𝒔 

10.  // 𝒐𝒇 𝒂𝒍𝒍 𝒗𝒂𝒓𝒊𝒂𝒃𝒍𝒆𝒔 𝒙, - 𝒔𝒂𝒕𝒊𝒔𝒇𝒊𝒆𝒔 𝒕𝒉𝒆 𝒈𝒊𝒗𝒆𝒏 𝑬𝒙𝒑𝒓𝒆𝒔𝒔𝒊𝒐𝒏 𝑬 

11.      𝑺𝒖𝒄𝒄𝒆𝒔𝒔  ;   // 𝑨𝒍𝒈𝒐𝒓𝒊𝒕𝒉𝒎 𝒔𝒖𝒄𝒄𝒆𝒔𝒔𝒇𝒖𝒍𝒍𝒚 𝒕𝒆𝒓𝒎𝒊𝒏𝒂𝒕𝒆𝒔. 

12.           𝒆𝒍𝒔𝒆 

13.      𝑭𝒂𝒊𝒍𝒖𝒓𝒆  ;  

14.     // 𝑶𝒕𝒉𝒆𝒓𝒘𝒊𝒔𝒆, 𝑨𝒍𝒈𝒐𝒓𝒊𝒕𝒉𝒎 𝒖𝒏𝒔𝒖𝒄𝒄𝒆𝒔𝒔𝒇𝒖𝒍𝒍𝒚 𝒕𝒆𝒓𝒎𝒊𝒏𝒂𝒕𝒆𝒔 

15.   + 



Nondeterministic Satisfiability Algorithm 

The above algorithm chooses one of the 𝟐𝒏 possible 

assignments of truth values to 𝒙𝟏, 𝒙𝟐,  𝒙𝟑, … . , 𝒙𝒏  and verifies 

that 𝑬 𝒙𝟏, 𝒙𝟐,  𝒙𝟑, … . , 𝒙𝒏  is true of not for that assignment in 

nondeterministic approach. 



BEST OF LUCK FOR 

YOUR MID AND  

FINAL EXAMINATIONS 


