Q\\\\torma%

& ’

©
b 3 ° =
s =
© 2

o ~d

VISHNU 3\ ‘I&'

UNIVERSAL LEARRNI

DESIGN AND ANALYSIS
OF ALGORITHMS (DAA)
(A34EC)

By :-
VIJAYKUMAR MANTRI,

ASSOCIATE PROFESSOR.
vijay_mantri.it@bvrit.ac.in

—
e

F Algorithm

Implement Analyze

-

Q\ “\§0 I‘Ma,,.o

3
2

al'tmeo,

?
e

w'? Textbook

Fundamentals of Computer

Alglorlth MS
PR

aformy
A\ \ ”o,,

‘¢\rtlr;¢,/”r

el |
'{‘?olo““-,ﬁ\

9

UNIVERSAL LEARNING

DAA Unit VI
NP-Hard and NP-
Complete Problems

Algorithms |

o
]
]
=
3
o
3
-

S
implement
I A

— —"

-
-

Unit VI Syllabus <o

NP-Hard and NP-Complete Problems:
+ Basic Concepts

+ Nondeterministic Algorithms
+ NP-Hard and NP-Complete Classes
+ Cook’s Theorem.

LR Basic Concepts ‘é
In this unit, we are going to learn distinction between
problems that can be solved by a polynomial time and
problems for which no polynomial time algorithm is known.

It is unexplained phenomenon that for many of the problems
we know and study, the best algorithm for their solutions have
computing times that cluster into two groups.

The first group consists of problems whose solution times are
bounded by polynomials of small degree like Linear Search
0(n), Binary Search 0(log n), Bubble/Insertion sorting 0(n?),
Merge Sorting 0(n log n), Matrix Multiplication 0(n?) etc.
The second group is made up of problems whose best-known
algorithms are nonpolynomial (exponential) like Travelling

Salesperson 0(n?2™) and 0/1 Knapsack Problem 0(2™),
Sum of Subsets 0(2") , Graph coloring 0(2") , Hamiltonian
Cycle 0(n?2"), etc.

\“\torm ¢,

- Basic Concepts {0 ;

VISHNU

UNIVERSAL LEARNING

+ In the quest to develop efficient algorithms, no one has been
able to develop a polynomial time algorithm for any problem
In second group.

+ This Is very important because algorithms whose computing
times are greater than polynomial (specially time is
exponential) very quickly require such vast amount of time to
execute that even moderate-size problems cannot be solved.

+ Here we are going to show that many of the problems for
which there are no known polynomial time algorithms are
computationally related.

+ In fact, we establish two classes of problems, namely
NP — Hard and NP — Complete.

vt off Basic Concepts .07

NIVERSAL LEARNIN

+ A problem that is NP — Complete has the property that it can
be solved in polynomial time if and only if all other NP —
Complete problems can also be solved in polynomial time.

+ [fan NP — Hard problem can be solved in polynomial time,
then all NP — Complete problems can be solved Iin
polynomial time.

+ All NP — Complete problems are NP — Hard, but some
NP — Hard problems are not known to be NP — Complete.

\“\(orm ¢,

‘- /\
< e,
E =-

Lo Nondeterministic Algorithms x;& 1

VISHNU

UNIVERSAL LEARNING

+ Generally, algorithms has the property that the result of every
operation is uniquely defined.

+ Algorithms with this property are called Deterministic
Algorithms.

+ Such algorithms represent the programs which can be
executed on a computer.

+ |In a theoretical framework we can remove this restriction on
the outcome of every operation.

+ We can allow algorithms to contain operations whose
outcomes are not uniquely defined but are limited to specified
sets of possibllities.

+ The machine executing such operations is allowed to choose
any one of these outcomes subject to termination condition to
be defined later.

\“\Qorm ¢

- Nondeterministic Algorithms 1&}

VISHNU

UNIVERSAL LEARNING

+ These types of Algorithms are called Nondeterministic
Algorithms.

+ To0 specify such algorithms, we introduce three new functions:
1. Choice(S) — arbitrarily chooses one of the elements of set S.
2. Failure() — indicates an unsuccessful completion.

3. Success() — indicates an successful completion.

+ The assignment statement x := Choice(1,n) could result in x
being assigned any one of the integers in the range [1, n].

+ Whenever there Is a set of choices that leads to a successful
completion, then one such set of choices Is always made and
the algorithm terminates successfully.

+ A nondeterministic algorithm terminates unsuccessfully if
and only if there exists no set of choices leading to a success
signal.

\“\(orm ¢,

\. ,\
< 4 e,
& =‘
=

Lo Nondeterministic Algorithms x;& 1

VISHNU

+ The computing time for Choice, Success and Failure are
taken to be 0(1).

+ A machine capable of executing nondeterministic algorithm is
called a nondeterministic machine.

+ Although nondeterministic machine do not exists in practice,
we see that they provide strong intuitive reasons to conclude
that certain problems cannot be solved fast deterministic
algorithms.

+ Example 1 - Nondeterministic Search (NSearch): Consider
the problem of searching for an element x in a given set of
elements 4A[1:n],n > 1.

+ We have to find an index j such that A[j] =xorj=0if xis
not in A.

+ A nondeterministic algorithm for this is
Algorithm NSearch (Amn, x)
{

1

2.

3. j:= Choice(1,n); //]jis assigned value between 1 and n
4. if A[j] = x then

5. //Byluck,if jis the index of our searching element x
6.

7.

{
write (j); //
Then display the position of the element

8. Success(); // Non — deterministic algorithm is
9. //successfully executed & terminates
10. }
11. write (0); // Then display the 0 as position of
12. //the element indicating failure.
13. Failure(); // Non — deterministic algorithm is

14. // failed and terminates
15. }

forma

From the way of a hondeterministic computation is defined, it
follows that the number O can be output if and only if there is
no j such that Alj] = x.

Search Algorithm is of nondeterministic complexity 0(1).

LT\ thie

Note that since A is not ordered, every deterministic search
algorithm is of complexity Q(n).

Example 2 - Nondeterministic Sorting (NSort) : Let

Ali],1 < i < n, be an unsorted array of positive integers. The
nondeterministic algorithm NSort(4,n) sorts the numbers
Into increasing order and then output them.

An auxiliary array B[1: n] is used for convenience.

The time complexity is O(n).

Recall that all deterministic sorting algorithms must have a
complexity of Q(n log n).

+ A nondeterministic algorithm for this sorting is
1. Algorithm NSort (A,n)
2. // Sortnpositive integers.
3.
fori=1tondo BJi]:= 0;// Initialize array B[] with O
fori=1tondo
{
Jj = Choice(1,n);
//jis assigned a value between1 andn
if Blj] + 0 then
10. //if jvalueis already chosen value,then failure
11. Failure();
12. BJj] = AJi];
13. // Assign B|j] as next element from array A, Ali]
14. }

0V NS NN

15. fori=1ton—1do // Verify the sort order.

16. if Bli] > B|i + 1] then

17. //If elements chosen not in correct sorted order
18 Failure(); // Algorithm unsuccessfully terminates
19. write (B[1:n)); // I1f elements are by luck,

20. //chosenin correct sorted order,then display.

21. Success(); //Algorithm successfully terminates

22}

+ Example: n =4

Al | = {5,9,7,2}

+ Successful Case : Randomly choose j = 2,4,3,1

+ B
+ B
+ B
+ B

2]
4]
3]
e

1]
2]
3]
4

= 5
=9
=7
= 2

+ DisplayB| | ={2,5,7,9}

+ Example 3 - Nondeterministic 0/1 Knapsack Problem :

Algorithm NKP (p,w,n,m,r, x)
{
W:=0;, P:=0;//Noobjects are chosen yet
fori:=1tondo
{
x|i] := Choice(0,1);
// Object i,is randomly decided to chose or leave
W =W + x|i] * wl|i];
// If Objectiis chosen,then add its weight, else add 0
10. P := P + x[i] = p|i]; // similarly, If Objectiis
11. //chosen,then add its profit,else add 0.
12. '}

VW R NS RN NN

"dolau\\')‘ 5

\\\fo Mgy,
QK f/00

> A
< (3
=

wlS'HNU Nondeterministic Algorithms - Example {‘}
13. if (W >m)or (P <r))then
14. //If selected objects weight is more than Knapsack
15. //capacity or selected objects won't give us
16. //maximum profit r.
17. Failure();
18. // Algorithm unsuccessfully terminates.
19. else Success();
20. // Otherwise Algorithm successfully terminates.

21.)

+ The time complexity is O(n).
+ If g Is the input length using binary representation, the time is
0(q).

\“\Qorm ¢

& NP-Hard and NP-Complete Classes: {L}

VISHNU

UNIVERSAL LEARNING

Definition P, NP, NP — Hard and NP — Complete

+ In measuring the complexity of an algorithm, we use the input
length as parameter.

+ An algorithm A is of Polynomial Complexity if there exists
a polynomial p() such that the computing time of
Ais O(p(n)) for every input of size n.

+ P Is the set of all decision problems solvable by deterministic
algorithms in polynomial time.

+ NP Is the set of all decision problems verifiable by
Nondeterministic Algorithms in polynomial time.

+ |f a problem & solution is given, algorithm should be able to
tell correct or incorrect in polynomial time.

+ Since deterministic algorithms are just a special case of
nondeterministic, we conclude that P € NP.

aformg,.
\.°K\ “o,
3 2
=
S— =
S

&> NP-Hard and NP-Complete Classes:{ @
VISHNU %‘& ,a[:’
"4 A'problem is NP — Hard, if any problem (in NP) can be

reduced to NP Problem in polynomial time.
+ A problemis NP — Complete, if any problem (in NP) can be

reduced to it in polynomial time and it is also in NP.
NP — Complete

3

NP — Hard

+ This means, the set of NP — Complete problems is the set
formed by intersect of NP and NP — Hard.
+ The main ambiguity in computer science field is whether

P =NPorP + NP.

VISHNU

T NP-Hard and NP-Complete Classes: {5}

+ It'iS"possible that for all problems in NP, there exists
polynomial time deterministic algorithms that have remained
undiscovered?

+ This seems unlikely, at least because of the tremendous effort
that has already been extended by so many people on these
problems.

+ A proof that P + NP is just as elusive and seems to require as
yet undiscovered techniques.

+ But as with many famous unsolved problems, they serve to
generate other useful results, and the question of whether
NP < P is no exception.

+ The figure displays the relationship between P
and NP assuming P # NP.

Lo

VISHNU

Cook’s Theorem

+ S. Cook formulated the following question : Is there any single
problem in NP such that if we showed it to be in P, then that
would imply that P = NP?

+ Cook answered his own guestion in the affirmative with the

following theorem, known as Cook’s Theorem.

+ Cook’s Theorem : Satisfiability isin P if and only if P = NP

+ NP — Hard and NP — Complete : A Problem L is in
NP — Hard, if and only if satisfiability reduces to L

(satisfiability « L)
+ AproblemLis NP — Completeifandonlyif Lis NP — Hard

and L € NP.

+ The satisfiability problem is determine whether a formula is
true for some assignment of truth values to the variables.

QK“‘“"""%

\92

€y ¢
)
2

1B Cook’s Theorem

VISHNU

NIVERSAL LEARNIN

+ Satisfiability : Nondeterministic approach

epartm
L
0j0uyd

3

\
4

+ Consider a problem with 4 variables x4, x5, x3, and x4
+ Let conjunctive normal form of the problem is
E=((x1VX3) AN(X3 VX3 VX)) A(XyVZXy)
+ This function E, will be true if and only if every ax term is true.

+ The expression E is valid only when if it is true for all true
values of its variables x4, x5, x3, and x4,.

+ This can be written using Nondeterministic Algorithm

+ Nondeterministic Satisfiability Algorithm :
Algorithm Eval (E, n)
//Determine whether the propositional formula E
//is Satisfiable the variables are x{,x3, X3,,Xy,.
{
fori:=1tondo
// Choose a truth value assignment.
x|i] := Choice(false,true);
// Variable x|i],is randomly chosen 0 or 1
if (E(xq,x9, X3,....,X,) = 1) then // If chosen values
10. // of all variables x| | satisfies the given Expression E
11. Success(); //Algorithm successfully terminates.
12. else
13. Failure();

14. // Otherwise, Algorithm unsuccessfully terminates
15. }

VW ONS RN WN RN

\\\\form ¢,

miﬂ&wNondetermlmstlc Satisfiability Algorlthm,.xa j

+ The above algorithm chooses one of the 2™ possible
assignments of truth values to (x4, x,, X3,, X,) and verifies
that E(xq, x5, X3,,X;,,) IS true of not for that assignment in

nondeterministic approach.

aform,
A\ \ ”o,,

r ~ A
<>

™ [

b -+ 0O

: =

© hd

o o

‘6& J‘\’?

VISHNU

UNIVERSAL LEARNING

BEST OF LUCK FOR
YOUR MID AND
FINAL EXAMINATIONS

;uémp-adxg

Algorithms |

.
implement
I by

— —"

-
-

