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Greedy Method:
+ General Method
+ Applications —
+ Job Sequencing with Deadlines
+ Knapsack Problem
+ Minimum Cost Spanning Trees
+ Prim’s Algorithm.
+ Kruskal's Algorithm
= + Single Source Shortest Path Problem.
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e Greedy Method — General Method {é}

VISHNU
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+ Greedy method is the most straightforward designed
technique.

+ As the name suggest they are short sighted in their approach
taking decision on the basis of the information immediately at
the hand without worrying about the effect these decision
may have in the future.

+ Greedy Method : A problem have n inputs and require us to
obtain a subset that that satisfy some constraints.

+ Any subset that satisfy these constraints is called a Feasible
Solution.

+ A feasible solution that either maximizes or minimizes a
given objective function is called an Optimal Solution.



& Greedy Method — General Method {5}

VISHNU
+ A Greedy method suggests that one can devise an algorithm
that works In stages, considering one input at a time for
getting Optimal solution.

+ This Is done by considering the inputs in an order determined
by some selection procedure.

+ This version of greedy technique is called Subset Paradigm.

+ For problems that do not call for the selection of an optimal
subset in the greedy method we made decisions by
considering the inputs in some order.

+ Each decision is made using Optimization Criteria that can
be computed using decisions already made.

+ This version of greedy technique is called Ordering
Paradigm.
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Control algorithm for Greedy Method
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mAlgorithm Greedy (a,n)
//al1l: n]containthe n’ inputs
{
solution := ¢ ; // Initialize the solution.
fori:= 1tondo
{
x:= Select (a);
if Feasible(solution, x) then
solution := Union(solution, x);
10. }
11. return solution;
12. }



iatiees Greedy Method — Examples $07
+ Cash Denominations — Bank Cashier clearing a Cheque of
Rs. 123,878/- & giving Cash Notes/Coins to Customer.

+ Machine Scheduling — Complete given number tasks (with
Start & Finish) time on number of Machines.
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- Knapsack Problem

VISHNU

UNIVERSAL LEARNIN

+ We are given n objects and an knapsack or bag.

+ Object i had a weight w; and knapsack capacity m.

+ If a fraction x;,0 < x; < 1, of object i placed into knapsack,
then profit of p;x; IS earned.

+ The objective Is to obtain a filling of knapsack that maximizes
the total profit earned.

+ As knapsack capacity is m, we require the total weight of all
chosen objects to be at most m.

+ Formally the problem can be stated as

Maximize Z PiX;

1<i<n

Subject to 2 WiX; <m
1<i<n
and 0 < x; <1, 1<i<n

Qe‘;artm
o
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14.

Algorithm for Knapsack Problem s,
Algorithm GreedyKnapsack (m,n)
// p[1:n] and w[1:n] contain the profits & weights of
// the n object ordered such that
Il pli] /wli] >= pli+ 1]/ w[i+ 1]
[l m is the Knapsack size and x[1: n] is solution vector.
{
fori:=1tondox|i]:= 0.0; // Initialize x.
U:=m;
fori:= 1tondo
{
if (w[i] > U) then break;
x|i]:=1.0; U:= U — w|i]
}
if(i<=n)thenx|i]:= U/wl|i];

15}



Knapsack Problem — Examples '
"+ Find an optimal solution to the knapsack instance(s).

Wi Pi
m=750 | n=15
70 135
73 139
77 149
80 150
82 156
87 163
90 173
94 184
98 192
106 201
110 210
113 214
115 221
118 229
120 240

(1)

Wi Pi
m=165 | n=10
23 92
31 o7
29 49
44 68
53 60
38 43
63 67
85 84
89 87
82 72

(2)

3)

(4)

Wi Pi
m=26 n=5
12 24
7 13
11 23
8 15
16

m=104 n=8
25 350
35 400
45 450
) 20
25 70
3 8
2 5
2 5

(5)

(6)

Wi Pi
m=190 n=6
56 50
59 50
80 64
64 46
75 50
17 3
m=50 n=7
31 70
10 20
20 39
19 37
3
10




Knapsack Problem - Solution
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(1) m = 750 n=15
Wi |70] 73 [ 77 | 80 | 82 | 87 | 90 | 94 | 98 | 106 | 110 | 113 | 115 | 118 | 120
Pi |135| 139 | 149 | 150 | 156 | 163 | 173 | 184 | 192 | 201 | 210 | 214 | 221 | 229 | 240
Pi/Wi |1.931.90|1.94|1.88]1.90]1.87|1.92|1.96|1.96|1.90|1.91|1.80[1.92]1.94]2.00
Xi 1 0 1 0 0 0 1 1 1 0 0 0 |0.72| 1 1
g{f\f\',ti 135/ 0 [149| 0 | o | 0 [173|184(192| 0 | o | 0 |159 229|240
1) Total Profit = 1461
(2) m = 165 n=10
Wi 23 | 31 | 29 | 44 | 38 53 63 85 | 89 | 82
Pi 92 | 57 | 49 | 68 | 43 60 67 84 | 87 | 72
Pi/Wi 400 | 1.84 | 1.69 | 155 | 1.13 | 1.13 106 | 099 | 098 | 0.88
Xi 1 1 1 1 1 0 0 0 0 0
Profit
(piowi) | 92 | 57 | 49 | 68 | 43 | O 0 0| 0] o0
(3) m = 26 n=5 2) Total Profit = 309
Wi 12 7 11 8 9
Pi 24 13 23 15 16 .
Pi/Wi 200 | 1.86 | 2.09 1.83 178 | 3) Total Profit = 53
Xi 1 0 1 0.38 0
Profit (Pi*Wi) 24 0 23 6 0)




Knapsack Problem - Solution

VISHNU
(4) m = 104 n=8
Wi 25 35 45 25 3 2 2
Pi 350 400 450 20 70 8 5 5
Pi/Wi 14.00 | 11.43 | 10.00 4.00 2.80 2.67 2.50 2.50
Xi 1 1 0.98 0 0 0 0
Profit Pi*Wi| 350 400 441 0 0 0 0
(5) m = 190 n = 6 4) Total Profit = 1191
Wi 56 59 80 64 75 17
Pi 50 50 64 46 50 5 e
Pi/Wi 0.89 0.85 0.80 0.72 0.67 0.29 5) Total Profit = 160
Xi 1 1 0.94 0 0 0
——
Profit Pi*Wi | 50 50 60 0 0 0 6) Total Profit = 108
(6) m = 50 n=7
Wi 31 10 20 19 4 3 6
Pi 70 20 39 37 7 5 10
Pi/Wi 2.26 2.00 1.95 1.95 1.75 1.67 1.67
Xi 1 1 0.45 0 0 0 0
Profit PI*Wi| 70 20 18 0 0 0 0




& Job Sequencing with Deadlines {é}

We are given a set of n jobs.

-
+ Associated with job i is an integer deadline d; = 0 and a profit
Pi > 0.

+ If any job i the profit p; is earned iff the job is completed by its
deadline.

+ To complete a job, one has to process the job on a machine for
one unit of time.

+ Only one machine is available for processing jobs.

+ A feasible solution for this problem is a subset J of jobs such
that each job in this subject can be completed by this deadline.

+ The value of feasible solution J is the sum of the profits of the
jObS |n] l.e. Zi € ]pl
+ An optimal solution is a feasible solution with maximum value.

+ Since the problem involves the identification of a subset, it fits
the Subset Paradigm.
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+ The Solution 13 is optimal

Feasible solution

(1)

(2)

(3)

(4)

(5)
(1,2)
(1,3)
(1,4)
(1,5)
(2,3)
(2,4)
(2,5)
(1,2,4)
(1,3,5)

+ Examplel. n=5 (py, P2 P3PsuPs5) =
~ d,d,d,d,d) =(2,21,3,3)
Processing Segquence
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(20,15,10,5,1)

Value
20
15
10
5
1
35
30
25
21
25
20
16
40
31
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+ Example2. n=4 (p,p, PP, = (100,10,15,27)

+ Feasible solution

o N ke bR

(1,2)
(1,3)
(1,4
(2,3)
(3,4
(1)
(2)
(3)
(4)

(dydydsd,) =(2,1,2,1)
Processing Sequence

2,1
1,30r3,1
4,1

2,3

4,3

1

2
3
4

+ The Solution 3 is optimal

Value

110
115
127
25
42
100
10
15
27

18, l a'u “-,'a\ :
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Job Sequencing with Deadlines

Algorithm JS(d,J,n)
/[dli] >1,1<i<narethedeadlines,n > 1.
/| The job are ordered such that p[1] = p[2] .... = p[n]
/[ J|i] is the ith job in the optimal solution,1 <i < k.
/| Also at termination d[][i]] <d[J[i+1]],1<i<k.

{

d[0] := J|0] := 0; // Initialize

J[1] = 1; // Include job 1

k=1,

fori :=2tondo

. 1

/| Consider jobs in non increasing order of P|i]; Find
I/l the position for i and check feasibility of insertion
r:=k;



- Job Sequencing with Deadlines )

ool 00 °E 2
15. while ((d[][r]] > d[i])and (d|]J[r]|# r)) dor:=r—1;
16. if ((d|J[r]] < d[i])and (d[i] > r))then
17. {
18. // Insertlinto]| ]
19. forq=kto(r+1)step-1doj|[q+ 1] :=]|q];

20. JIr+1] =
21, k=k+ 1;
22. }
23. }

24. returnk;
25. }



High Level description of SEING

YiSHNY Job Sequencing algorithm NS L
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Algorithm GreedyjJob(d,J,n)
Il ] is a set of jobs that can be completed by thier
Il deadlines

{

J=1{1}

fori =2tondo
{

If (all jobs inJ U {i} can be completed by their
deadlines) then

J:=J Ui}



+ Let’s revisit example 1 to know how Optimal Solution is foufzd.‘ ,
n=5 (Py,P2P3PsPs) = (20,15,10,5,1)
d,d,d;d,d:) =(2,2,1,3,3)

+ The array P is sorted as per Profits, lets see how it works as per
algorithm we seen.

J Assigned Slots Job Considered Action Profit
D none 1 Assign to [1, 2] 0
{1} 1, 2] 2 Assign to [0, 1] 20
{1, 2} 0,1],[1, 2] 3 Cannot fit, reject 35
{1, 2} 0,1],[1, 2] 4 Assign to [2, 3] 35
{1,2,4} [0,1],[1,2],[2,3] 5 Reject 40

+ The Optimal Solution is J = {1, 2, 4} with a profit of 40.
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¥ Job Sequencing with Deadlines {03

+ Example 3 : Find Feasible solutions & Optimal Solution
for given jobs with deadlines for n = 7

(Pv P2 P3PuPsPeP7) = (3,5,20,18,1,6,30)
(d, d,d,d,d.d.,d,) =(1,3,4,3,2,1,2)

+ Also show the Optimal Solution generated by function
(algorithm) JS. (Hint : Answer is J6, J7, J4 & J3)

+ Example 4 : Find Feasible solutions & Optimal Solution
for given jobs with deadlines for n = 7

(Pv P2 P3PePsPeP7) = (3,5,20,18,1,6,30)
(dy,d, dsd,d.d.,d,) =(1,2,4,2,2,1,2)

+ Also show the Optimal Solution generated by function
(algorithm) JS. (Hint : Be careful with deadlines)



\\\fo Mgy,
QK f/00

€y ¢
2

9

epartm
jouyd

&  Minimum-Cost Spanning Trees

e A
+ Let G = (V, E) be an undirected connected graph with

vertices ‘V’ and edges ‘E’.
+ A sub-graph T = (V, E’) of the G Is a Spanning tree of G Iff ‘T’
IS a tree.

5 58 Ho ol

+ The figure shows the Complete Graph with 4 Nodes and
three spanning trees of the same.

+ The spanning trees have many applications like Analysis of
Electrical Circuits, Shortest route problems, etc.

0

9
3



&  Minimum-Cost Spanning Trees -15}

e
+ The problem is to generate a minimal subgraph G’ of G such
that G’ = (V,E") where E’ is the subset of E, & G’ is a Minimal
Subgraph (minimum spanning tree).
+ A minimal subgraph is one with the fewest number of edges.

+ Any connected graph with n vertices must have at leastn — 1
edges and all connected graphs with n — 1 edges are trees.

+ The spanning trees of G represent all feasible choices

+ Each and every edge will contain the given non-negative
length.

+ Connect all the nodes with edge present in set E’ and weight
has to be minimum i.e. we are interested in finding a
spanning tree of ¢ with minimum cost.

+ The cost of a spanning tree is the sum of the costs of the
edges In that tree.
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(a) (b)

+ The figure shows a Graph & its minimum-cost spanning tree.

+ There are 2 method to determine a minimum-cost spanning
tree namely Kruskal’s Algorithm and Prim’s Algorithm.
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L In Kruskal's algorithm the selection function chooses edges in
Increasing order of length without worrying too much about

their connection to previously chosen edges, except that

never to form a cycle.

+ The result is a forest of trees that grows until all the trees in a
forest (all the components) merge in a single tree.

+ In this algorithm, a minimum cost-spanning tree ‘T’ is built
edge by edge.

+ Edge are considered for inclusion in ‘T’ in increasing order of
their cost.

+ An edge is included in ‘T’ if it doesn’t form a cycle with edge
already in T.

+ To find the minimum-cost spanning tree the edge are
Inserted to tree in increasing order of their cost.



- Kruskal’s Algorithm {é}

VISHNU

1.

Let G = (V, E) be a connected graph with weights assigned
to each edge.

Select any edge of minimum value of G. This is the first
edge of minimal spanning tree T.

Select any edge (v, w) of E from remaining edges of G
having minimum value, which will not form a closed path
with the edges already included in T.

Step 3 is repeated until T contains n — 1 edges where n Is
number of vertices of G.

Now the tree T becomes Minimal-Cost Spanning Tree of G.
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Kruskal’s Algorithm — Early form of
Minimum-Cost Spanning
Tree algorithm

Jouyd
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t == Q;
while ((t has less thann — 1 edges) and (E + 0))do
{

Choose an edge (u,w) fromE of lowest cost;
Delete (u,w) fromeE;
if (u,w) does not create a cycleint then add (u,w) to t;

else discard (u,w)

}

1.
2.
3.
4.
5.
6.
/.
8.
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Minimum-Cost Spanning

Original Graph G Tree T of G.
Total Cost = 99
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R Prim’s Algorithm &&:}

AL Lete
+ Let G be a connected graph with weights assigned to each
edge.
+ In Prim's algorithm, we start from an arbitrary vertex (root).

+ At each stage, add a new branch (edge) to the tree already
constructed; the algorithm halts when all the vertices in the
graph have been reached.

+ The Prims algorithm will start with a tree that includes only a
minimum cost edge of G.

+ Then, edges are added to the tree one by one.

+ The next edge (i,j) to be added in such that i is a vertex
Included in the tree, j Is a vertex not yet included, and cost of
(i, j), cost]i, j] is minimum among all the edges.



R Prim’s Algorithm &&:}

VISHNU

1.

Let G be a connected graph with weights assigned to each
edge.

First let T be the minimal spanning tree consists of any
vertex V of G.

Among all edges not in T, which are incident on a vertex
(neighborhood of vertex) in T, and not forming a closed path
when added to T, select the minimum cost edge and add it
toT.

The step 3 Is repeated until we select n — 1 edges which
covers n vertices in G resulting in Minimal-Cost Spanning
TreeT.

Now the tree T becomes Minimal-Cost Spanning Tree of G.



() Stages in Prim’s Alggrith (1)
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Prim’s Algorithm 10

Minimum-Cost Spanning
Tree T of G.
Total Cost = 99

Original Graph G



I, Prim’s Algorithm Examples f&"
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Compute a minimum
cost spanning tree
using

a) Kruskal’s Algorithm
&

b) Prim’s Algorithm

11
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