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Greedy Method – General Method 

Greedy method is the most straightforward designed 

technique. 

As the name suggest they are short sighted in their approach 

taking decision on the basis of the information immediately at 

the hand without  worrying about the effect these decision 

may have in the future. 
 

Greedy Method : A problem have 𝒏 inputs and require us to 

obtain a subset that that satisfy some constraints. 

Any subset that satisfy these constraints is called a Feasible 

Solution. 

A feasible solution that either maximizes or minimizes a 

given objective function is called an Optimal Solution. 



Greedy Method – General Method 

A Greedy method suggests that one can devise an algorithm 

that works in stages, considering one input at a time for 

getting Optimal solution. 

This is done by considering the inputs in an order determined 

by some selection procedure. 

This version of greedy technique is called Subset Paradigm. 

For problems that do not call for the selection of an optimal 

subset in the greedy method we made decisions by 

considering the inputs in some order. 

Each decision is made using Optimization Criteria that can 

be computed using decisions already made. 

This version of greedy technique is called Ordering 

Paradigm. 



Control algorithm for Greedy Method 

1. 𝑨𝒍𝒈𝒐𝒓𝒊𝒕𝒉𝒎 𝑮𝒓𝒆𝒆𝒅𝒚 (𝒂, 𝒏) 

2. // 𝒂, 𝟏 ∶  𝒏 - 𝒄𝒐𝒏𝒕𝒂𝒊𝒏 𝒕𝒉𝒆 ‘𝒏’  𝒊𝒏𝒑𝒖𝒕𝒔 

3. *  

4.   𝒔𝒐𝒍𝒖𝒕𝒊𝒐𝒏 ∶=  𝝓 ; // 𝑰𝒏𝒊𝒕𝒊𝒂𝒍𝒊𝒛𝒆 𝒕𝒉𝒆 𝒔𝒐𝒍𝒖𝒕𝒊𝒐𝒏. 

5.   𝒇𝒐𝒓 𝒊 ∶=  𝟏 𝒕𝒐 𝒏 𝒅𝒐 

6.   * 

7.      𝒙 ∶ =  𝑺𝒆𝒍𝒆𝒄𝒕 (𝒂); 

8.     𝒊𝒇 𝑭𝒆𝒂𝒔𝒊𝒃𝒍𝒆(𝒔𝒐𝒍𝒖𝒕𝒊𝒐𝒏, 𝒙) 𝒕𝒉𝒆𝒏 

9.         𝒔𝒐𝒍𝒖𝒕𝒊𝒐𝒏 ∶=  𝑼𝒏𝒊𝒐𝒏(𝒔𝒐𝒍𝒖𝒕𝒊𝒐𝒏, 𝒙); 

10.    + 

11.   𝒓𝒆𝒕𝒖𝒓𝒏 𝒔𝒐𝒍𝒖𝒕𝒊𝒐𝒏; 

12.  + 



Greedy Method – Examples 

Cash Denominations – Bank Cashier clearing a Cheque of 

Rs. 123,878/- & giving Cash Notes/Coins to Customer. 

Machine Scheduling – Complete given number tasks (with 

Start & Finish) time on number of Machines. 



Knapsack Problem 
We are given 𝒏 objects and an knapsack or bag. 

Object 𝒊 had a weight 𝒘𝒊 and knapsack capacity 𝒎. 

If a fraction 𝒙𝒊, 𝟎 ≤ 𝒙𝒊 ≤ 𝟏, of object 𝒊 placed into knapsack, 

then profit of 𝒑𝒊𝒙𝒊 is earned. 

The objective is to obtain a filling of knapsack that maximizes 

the total profit earned. 

As knapsack capacity is 𝒎, we require the total weight of all 

chosen objects to be at most 𝒎. 

Formally the problem can be stated as 

𝑴𝒂𝒙𝒊𝒎𝒊𝒛𝒆  𝒑𝒊𝒙𝒊
𝟏≤𝒊≤𝒏

  

𝑺𝒖𝒃𝒋𝒆𝒄𝒕 𝒕𝒐  𝒘𝒊𝒙𝒊 ≤ 𝒎

𝟏≤𝒊≤𝒏

 

𝒂𝒏𝒅 𝟎 ≤ 𝒙𝒊 ≤ 𝟏, 𝟏 ≤ 𝒊 ≤ 𝒏 



Algorithm for Knapsack Problem 
1. Algorithm 𝑮𝒓𝒆𝒆𝒅𝒚𝑲𝒏𝒂𝒑𝒔𝒂𝒄𝒌 (𝒎, 𝒏) 

2. // 𝒑,𝟏: 𝒏- and 𝒘,𝟏: 𝒏- contain the profits & weights of  

3. // the 𝒏 object ordered such that  

4. // 𝒑,𝒊- / 𝒘,𝒊-   >=  𝒑,𝒊 + 𝟏- / 𝒘,𝒊 + 𝟏- 

5. // 𝒎 is the Knapsack size and 𝒙,𝟏: 𝒏- is solution vector. 

6. * 

7.    𝒇𝒐𝒓 𝒊 ∶= 𝟏 𝒕𝒐 𝒏 𝒅𝒐 𝒙, 𝒊 - ∶=  𝟎. 𝟎; // 𝑰𝒏𝒊𝒕𝒊𝒂𝒍𝒊𝒛𝒆 𝒙. 

8.    𝑼 ∶=  𝒎; 

9.   𝒇𝒐𝒓 𝒊 ∶=  𝟏 𝒕𝒐 𝒏 𝒅𝒐 

10.   * 

11.     𝒊𝒇 (𝒘,𝒊- > 𝑼) 𝒕𝒉𝒆𝒏 𝒃𝒓𝒆𝒂𝒌; 

12.     𝒙,𝒊- ∶= 𝟏. 𝟎;  𝑼: =  𝑼 −  𝒘,𝒊- 

13.   + 

14.   𝒊𝒇(𝒊 <= 𝒏) 𝒕𝒉𝒆𝒏 𝒙, 𝒊 - ∶=  𝑼/𝒘,𝒊-; 

15. + 



Knapsack Problem – Examples 
Find an optimal solution to the knapsack instance(s). 

𝑾𝒊 𝑷𝒊 𝑾𝒊 𝑷𝒊 𝑾𝒊 𝑷𝒊 𝑾𝒊 𝑷𝒊 

m=750 n=15 m=165 n=10 m=26 n=5 m=190 n=6 

70 135 23 92 12 24 56 50 

73 139 31 57 7 13 59 50 

77 149 29 49 11 23 80 64 

80 150 44 68 8 15 64 46 

82 156 53 60 (3) 9 16 75 50 

87 163 38 43 (5) 17 5 

90 173 63 67 m=104 n=8 

94 184 85 84 25 350 m=50 n=7 

98 192 89 87 35 400 31 70 

106 201 82 72 45 450 10 20 

110 210 (2) 5 20 20 39 

113 214 25 70 19 37 

115 221 3 8 4 7 

118 229 2 5 3 5 

120 240 (1) (4) 2 5 (6) 6 10 



Knapsack Problem – Solution 

(1) m = 750 n = 15 
Wi 70 73 77 80 82 87 90 94 98 106 110 113 115 118 120 

Pi 135 139 149 150 156 163 173 184 192 201 210 214 221 229 240 

Pi/Wi 1.93 1.90 1.94 1.88 1.90 1.87 1.92 1.96 1.96 1.90 1.91 1.89 1.92 1.94 2.00 

Xi 1 0 1 0 0 0 1 1 1 0 0 0 0.72 1 1 
Profit 
Pi*Wi 135 0 149 0 0 0 173 184 192 0 0 0 159 229 240 

1) Total Profit = 1461 

 (2) m = 165       n = 10     

Wi 23 31 29 44 38 53 63 85 89 82 

Pi 92 57 49 68 43 60 67 84 87 72 

Pi/Wi 4.00 1.84 1.69 1.55 1.13 1.13 1.06 0.99 0.98 0.88 

Xi 1 1 1 1 1 0 0 0 0 0 
Profit 

(Pi*Wi) 92 57 49 68 43 0 0 0 0 0 

 (3) m = 26 n = 5 
Wi 12 7 11 8 9 

Pi 24 13 23 15 16 

Pi/Wi 2.00 1.86 2.09 1.88 1.78 

Xi 1 0 1 0.38 0 

Profit (Pi*Wi) 24 0 23 6 0 

2) Total Profit = 309 

3) Total Profit = 53 



Knapsack Problem – Solution 

(4) m = 104       n = 8 
Wi 25 35 45 5 25 3 2 2 

Pi 350 400 450 20 70 8 5 5 

Pi/Wi 14.00 11.43 10.00 4.00 2.80 2.67 2.50 2.50 

Xi 1 1 0.98 0 0 0 0 0 

Profit Pi*Wi 350 400 441 0 0 0 0 0 

(5) m = 190   n = 6 
Wi 56 59 80 64 75 17 

Pi 50 50 64 46 50 5 

Pi/Wi 0.89 0.85 0.80 0.72 0.67 0.29 

Xi 1 1 0.94 0 0 0 

Profit Pi*Wi 50 50 60 0 0 0 

(6) m = 50   n = 7   
Wi 31 10 20 19 4 3 6 

Pi 70 20 39 37 7 5 10 

Pi/Wi 2.26 2.00 1.95 1.95 1.75 1.67 1.67 

Xi 1 1 0.45 0 0 0 0 

Profit Pi*Wi 70 20 18 0 0 0 0 

4) Total Profit = 1191 

5) Total Profit = 160 

6) Total Profit = 108 



Job Sequencing with Deadlines 

We are given a set of 𝒏 jobs. 

Associated with job 𝒊 is an integer deadline 𝒅𝒊 ≥ 𝟎 and a profit  

𝒑𝒊 > 𝟎. 

If any job 𝒊 the profit 𝒑𝒊 is earned iff the job is completed by its 

deadline. 

To complete a job, one has to process the job on a machine for 

one unit of time. 

Only one machine is available for processing jobs. 

A feasible solution for this problem is a subset 𝑱 of jobs such 

that each job in this subject can be completed by this deadline. 

The value of feasible solution 𝑱 is the sum of the profits of the 

jobs in 𝑱 i.e.  𝒑𝒊𝒊 ∈  𝑱  

An optimal solution is a feasible solution with maximum value. 

Since the problem involves the identification of a subset, it fits 

the Subset Paradigm. 



Job Sequencing with Deadlines Example 1.    𝒏 = 𝟓   (𝒑𝟏, 𝒑𝟐, 𝒑𝟑, 𝒑𝟒, 𝒑𝟓)  =  (𝟐𝟎, 𝟏𝟓, 𝟏𝟎, 𝟓, 𝟏) 
                             𝒅𝟏, 𝒅𝟐, 𝒅𝟑, 𝒅𝟒, 𝒅𝟓   = (𝟐, 𝟐, 𝟏, 𝟑, 𝟑) 

Feasible solution             Processing Sequence       Value 

1. (1)     1    20 
2. (2)     2    15 
3. (3)    3     10 
4. (4)     4    5 
5. (5)    5    1 
6. (1, 2)     1, 2 or 2, 1   35 
7. (1, 3)     3, 1    30 
8. (1, 4)     1, 4 or 4, 1   25 
9. (1, 5)     1, 5 or 5, 1   21 
10. (2, 3)     3, 2    25 
11. (2, 4)     2, 4 or 4, 2   20 
12. (2, 5)     2, 5 or 5, 2   16 
13. (1, 2, 4)     1, 2, 4    40 
14. (1, 3, 5)   3, 1, 5    31 

The Solution 13 is optimal 



Job Sequencing with Deadlines Example 2.    𝒏 = 𝟒   (𝒑𝟏, 𝒑𝟐, 𝒑𝟑, 𝒑𝟒)  =  (𝟏𝟎𝟎, 𝟏𝟎, 𝟏𝟓, 𝟐𝟕) 

                      𝒅𝟏, 𝒅𝟐, 𝒅𝟑, 𝒅𝟒  = (𝟐, 𝟏, 𝟐, 𝟏) 

Feasible solution             Processing Sequence       Value 

1. (1, 2)     2, 1    110 

2. (1, 3)     1, 3 or 3, 1   115 

3. (1, 4)     4, 1    127 

4. (2, 3)     2, 3    25 

5. (3, 4)     4, 3    42 

6. (1)     1    100 

7. (2)     2    10 

8. (3)     3    15 

9. (4)     4    27 

 

The Solution 3 is optimal 



1. 𝑨𝒍𝒈𝒐𝒓𝒊𝒕𝒉𝒎 𝑱𝑺(𝒅, 𝑱, 𝒏) 

2. // 𝒅 𝒊 ≥ 𝟏, 𝟏 ≤ 𝒊 ≤ 𝒏 𝒂𝒓𝒆 𝒕𝒉𝒆 𝒅𝒆𝒂𝒅𝒍𝒊𝒏𝒆𝒔, 𝒏 ≥ 𝟏. 

3. // 𝑻𝒉𝒆 𝒋𝒐𝒃 𝒂𝒓𝒆 𝒐𝒓𝒅𝒆𝒓𝒆𝒅 𝒔𝒖𝒄𝒉 𝒕𝒉𝒂𝒕 𝒑 𝟏 ≥ 𝒑 𝟐 … .≥ 𝒑,𝒏- 

4. // 𝑱 𝒊  𝒊𝒔  𝒕𝒉𝒆 𝒊𝒕𝒉 𝒋𝒐𝒃 𝒊𝒏 𝒕𝒉𝒆 𝒐𝒑𝒕𝒊𝒎𝒂𝒍 𝒔𝒐𝒍𝒖𝒕𝒊𝒐𝒏, 𝟏 ≤ 𝒊 ≤ 𝒌.  

5. // 𝑨𝒍𝒔𝒐 𝒂𝒕 𝒕𝒆𝒓𝒎𝒊𝒏𝒂𝒕𝒊𝒐𝒏 𝒅 𝑱 𝒊 ≤ 𝒅,𝑱 𝒊 + 𝟏 -, 𝟏 ≤ 𝒊 < 𝒌. 

6.  * 

7.   𝒅 𝟎 ∶=  𝑱 𝟎 ∶= 𝟎; // Initialize 

8.   𝑱,𝟏- = 𝟏; // Include job 1 

9.  𝒌 ≔ 𝟏; 

10.  f𝒐𝒓 𝒊 ≔ 𝟐 𝒕𝒐 𝒏 𝒅𝒐 

11. *  

12.  // 𝑪𝒐𝒏𝒔𝒊𝒅𝒆𝒓 𝒋𝒐𝒃𝒔 𝒊𝒏 𝒏𝒐𝒏 𝒊𝒏𝒄𝒓𝒆𝒂𝒔𝒊𝒏𝒈  𝒐𝒓𝒅𝒆𝒓 𝒐𝒇 𝑷 𝒊 ; Find 

13. // 𝒕𝒉𝒆 𝒑𝒐𝒔𝒊𝒕𝒊𝒐𝒏 𝒇𝒐𝒓 𝒊 𝒂𝒏𝒅 𝒄𝒉𝒆𝒄𝒌 𝒇𝒆𝒂𝒔𝒊𝒃𝒊𝒍𝒊𝒕𝒚 𝒐𝒇 𝒊𝒏𝒔𝒆𝒓𝒕𝒊𝒐𝒏 

14. 𝒓 ≔ 𝒌; 

Job Sequencing with Deadlines 



Job Sequencing with Deadlines 

15. 𝒘𝒉𝒊𝒍𝒆 𝒅 𝑱 𝒓 > 𝒅 𝒊 𝒂𝒏𝒅 𝒅 𝑱 𝒓 ≠ 𝒓 𝒅𝒐  𝒓 ∶= 𝒓 − 𝟏; 

16. 𝒊𝒇 ( 𝒅 𝑱 𝒓 ≤ 𝒅 𝒊 𝒂𝒏𝒅 (𝒅,𝒊- > 𝒓))𝒕𝒉𝒆𝒏 

17. * 

18. // 𝑰𝒏𝒔𝒆𝒓𝒕 𝑰 𝒊𝒏𝒕𝒐 𝑱, - 

19. 𝒇𝒐𝒓 𝒒 ≔ 𝒌 𝒕𝒐 𝒓 + 𝟏 𝒔𝒕𝒆𝒑 – 𝟏 𝒅𝒐 𝑱 𝒒 + 𝟏 ≔ 𝑱 𝒒 ; 

20. 𝑱 𝒓 + 𝟏 ≔ 𝒊; 

21. 𝒌 ≔ 𝒌 + 𝟏; 

22. + 

23. + 

24. 𝒓𝒆𝒕𝒖𝒓𝒏 𝒌; 

25. + 



1. 𝑨𝒍𝒈𝒐𝒓𝒊𝒕𝒉𝒎 𝑮𝒓𝒆𝒆𝒅𝒚𝑱𝒐𝒃(𝒅, 𝑱, 𝒏) 

2. // 𝑱 𝒊𝒔 𝒂 𝒔𝒆𝒕 𝒐𝒇 𝒋𝒐𝒃𝒔 𝒕𝒉𝒂𝒕 𝒄𝒂𝒏 𝒃𝒆 𝒄𝒐𝒎𝒑𝒍𝒆𝒕𝒆𝒅 𝒃𝒚 𝒕𝒉𝒊𝒆𝒓  

3. // 𝒅𝒆𝒂𝒅𝒍𝒊𝒏𝒆𝒔 

4.  * 

5.   𝑱 ≔ *𝟏+;  

6.   f𝒐𝒓 𝒊 ≔ 𝟐 𝒕𝒐 𝒏 𝒅𝒐 

7.   { 

8.     if (all jobs in 𝑱 ∪  *𝒊+ can be completed by their  

9.     deadlines) then 

10.       𝑱: = 𝑱 ∪ *𝒊+ 

11.   } 

12. } 

High Level description of  

Job Sequencing algorithm 



Job Sequencing with Deadlines Let’s revisit  example 1 to know how Optimal Solution  is found. 

    𝒏 = 𝟓   (𝒑𝟏, 𝒑𝟐, 𝒑𝟑, 𝒑𝟒, 𝒑𝟓)  =  (𝟐𝟎, 𝟏𝟓, 𝟏𝟎, 𝟓, 𝟏) 

            𝒅𝟏, 𝒅𝟐, 𝒅𝟑, 𝒅𝟒, 𝒅𝟓   = (𝟐, 𝟐, 𝟏, 𝟑, 𝟑) 

The array P is sorted as per Profits, lets see how it works as per 
algorithm we seen. 

  J        Assigned Slots    Job Considered      Action         Profit 

Φ  none   1 Assign to [1, 2] 0 

{1}  [1, 2]   2 Assign to [0, 1] 20 

{1, 2} [0, 1], [1, 2]  3 Cannot fit, reject 35 

{1, 2} [0, 1], [1, 2]  4 Assign to [2, 3] 35 

{1, 2, 4} [0, 1], [1, 2], [2, 3] 5 Reject   40 

 

The Optimal Solution is J = {1, 2, 4} with a profit of 40. 



Job Sequencing with Deadlines 

Example 3 : Find Feasible solutions & Optimal Solution 

for given jobs with deadlines for 𝒏 = 𝟕 

(𝒑𝟏, 𝒑𝟐, 𝒑𝟑, 𝒑𝟒, 𝒑𝟓, 𝒑𝟔, 𝒑𝟕)  =  (𝟑, 𝟓, 𝟐𝟎, 𝟏𝟖, 𝟏, 𝟔, 𝟑𝟎) 

𝒅𝟏, 𝒅𝟐, 𝒅𝟑, 𝒅𝟒, 𝒅𝟓, 𝒅𝟔, 𝒅𝟕  = (𝟏, 𝟑, 𝟒, 𝟑, 𝟐, 𝟏, 𝟐) 

Also show the Optimal Solution generated by function 

(algorithm) JS. (Hint : Answer is J6, J7, J4 & J3) 

Example 4 : Find Feasible solutions & Optimal Solution 

for given jobs with deadlines for 𝒏 = 𝟕 

(𝒑𝟏, 𝒑𝟐, 𝒑𝟑, 𝒑𝟒, 𝒑𝟓, 𝒑𝟔, 𝒑𝟕)  =  (𝟑, 𝟓, 𝟐𝟎, 𝟏𝟖, 𝟏, 𝟔, 𝟑𝟎) 

𝒅𝟏, 𝒅𝟐, 𝒅𝟑, 𝒅𝟒, 𝒅𝟓, 𝒅𝟔, 𝒅𝟕  = (𝟏, 𝟐, 𝟒, 𝟐, 𝟐, 𝟏, 𝟐) 

Also show the Optimal Solution generated by function 

(algorithm) JS. (Hint : Be careful with deadlines) 



Minimum-Cost Spanning Trees 

Let 𝑮 = (𝑽, 𝑬) be an undirected connected graph with 

vertices ‘𝑽’ and edges ‘𝑬’. 

A sub-graph 𝐓 = (𝑽, 𝑬’) of the 𝑮 is a Spanning tree of 𝑮 iff ‘𝑻’ 

is a tree. 

 

 

 

 

The figure shows the Complete Graph with 4 Nodes and 

three spanning trees of the same. 

The spanning trees have many applications like Analysis of 

Electrical Circuits, Shortest route problems, etc. 



Minimum-Cost Spanning Trees 

The problem is to generate a minimal subgraph 𝑮’ of 𝑮 such 

that 𝑮’ =  (𝑽, 𝑬′) where 𝑬′ is the subset of 𝑬,& 𝑮’ is a Minimal 

Subgraph (minimum spanning tree). 

A minimal subgraph is one with the fewest number of edges. 

Any connected graph with 𝒏 vertices must have at least 𝒏 − 𝟏 
edges and all connected graphs with 𝒏 − 𝟏 edges are trees. 

The spanning trees of 𝑮 represent all feasible choices 

Each and every edge will contain the given non-negative 

length. 

Connect all the nodes with edge present in set 𝑬’ and weight 

has to be minimum i.e. we are interested in finding a 

spanning tree of 𝑮 with minimum cost. 

The cost of a spanning tree is the sum of the costs of the 

edges in that tree. 



Minimum-Cost Spanning Trees 

The figure shows a Graph & its minimum-cost spanning tree. 

There are 2 method to determine a minimum-cost spanning 

tree namely Kruskal’s Algorithm and Prim’s Algorithm. 
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Kruskal’s Algorithm 

In Kruskal's algorithm the selection function chooses edges in 

increasing order of length without worrying too much about 

their connection to previously chosen edges, except that 

never to form a cycle.  

The result is a forest of trees that grows until all the trees in a 

forest (all the components) merge in a single tree. 

In this algorithm, a minimum cost-spanning tree ‘𝑻’ is built 

edge by edge. 

Edge are considered for inclusion in ‘𝑻’ in increasing order of 

their cost. 

An edge is included in ‘𝑻’ if it doesn’t form a cycle with edge 

already in 𝑻. 

To find the minimum-cost spanning tree  the edge are 

inserted to tree in increasing order of their cost.  

 



Kruskal’s Algorithm 

1. Let 𝑮 = (𝑽, 𝑬) be a connected graph with weights assigned 

to each edge.  

2. Select any edge of minimum value of 𝑮. This is the first 

edge of minimal spanning tree 𝑻. 

3. Select any edge (𝒗,𝒘) of 𝑬 from remaining edges of 𝑮 
having minimum value, which will not form a closed path 

with the edges already included in 𝑻. 

4. Step 3 is repeated until 𝑻 contains 𝒏 − 𝟏 edges where 𝒏 is 

number of vertices of 𝑮. 

5. Now the tree 𝑻 becomes Minimal-Cost Spanning Tree of 𝑮. 



Kruskal’s Algorithm – Early form of 

Minimum-Cost Spanning 

Tree algorithm 

1. 𝒕 ≔ ∅; 

2. 𝒘𝒉𝒊𝒍𝒆 ( 𝒕 𝒉𝒂𝒔 𝒍𝒆𝒔𝒔 𝒕𝒉𝒂𝒏 𝒏 − 𝟏 𝒆𝒅𝒈𝒆𝒔  𝒂𝒏𝒅 (𝑬 ≠ ∅))𝒅𝒐 

3. * 

4.   𝑪𝒉𝒐𝒐𝒔𝒆 𝒂𝒏 𝒆𝒅𝒈𝒆 (𝒖,𝒘) 𝒇𝒓𝒐𝒎 𝑬 𝒐𝒇 𝒍𝒐𝒘𝒆𝒔𝒕 𝒄𝒐𝒔𝒕; 

5.   𝑫𝒆𝒍𝒆𝒕𝒆 (𝒖,𝒘) 𝒇𝒓𝒐𝒎 𝑬; 

6.   𝒊𝒇 (𝒖,𝒘) 𝒅𝒐𝒆𝒔 𝒏𝒐𝒕 𝒄𝒓𝒆𝒂𝒕𝒆 𝒂 𝒄𝒚𝒄𝒍𝒆 𝒊𝒏 𝒕 𝒕𝒉𝒆𝒏 𝒂𝒅𝒅 (𝒖,𝒘) 𝒕𝒐 𝒕; 

7.   𝒆𝒍𝒔𝒆 𝒅𝒊𝒔𝒄𝒂𝒓𝒅 (𝒖,𝒘)  

8. + 
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Stages in Kruskal’s Algorithm 

(a) (b) (c) 

(d) (e) (f) 



Kruskal’s Algorithm 

Original Graph G 

Minimum-Cost Spanning 

Tree T of G. 

Total Cost = 99 
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Kruskal’s Algorithm Examples 
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Prim’s Algorithm 

Let 𝑮 be a connected graph with weights assigned to each 

edge. 

In Prim's algorithm, we start from an arbitrary vertex (root).  

At each stage, add a new branch (edge) to the tree already 

constructed; the algorithm halts when all the vertices in the 

graph have been reached.  

The Prims algorithm will start with a tree that includes only a 

minimum cost edge of 𝑮.  

Then, edges are added to the tree one by one.  

The next edge (𝒊, 𝒋) to be added in such that 𝒊 is a vertex 

included in the tree, 𝒋 is a vertex not yet included, and cost of 

(𝒊, 𝒋), 𝒄𝒐𝒔𝒕,𝒊, 𝒋- is minimum among all the edges. 



Prim’s Algorithm 

1. Let 𝑮 be a connected graph with weights assigned to each 

edge. 

2. First let 𝑻 be the minimal spanning tree consists of any 

vertex 𝑽 of 𝑮. 

3. Among all edges not in 𝑻, which are incident on a vertex 

(neighborhood of vertex) in 𝑻, and not forming a closed path 

when added to 𝑻, select the minimum cost edge and add it 

to 𝑻. 

4. The step 3 is repeated until we select 𝒏 − 𝟏 edges which 

covers 𝒏 vertices in 𝑮 resulting in Minimal-Cost Spanning 

Tree 𝑻. 

5. Now the tree 𝑻 becomes Minimal-Cost Spanning Tree of 𝑮. 
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(a) (b) (c) 
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Prim’s Algorithm 

Original Graph G 

Minimum-Cost Spanning 

Tree T of G. 

Total Cost = 99 
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Prim’s Algorithm Examples 
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Compute a minimum 

cost spanning tree 

using 

a) Kruskal’s Algorithm  

&  

b) Prim’s Algorithm 

https://www.geeksforgeeks.org/prims-

minimum-spanning-tree-mst-greedy-

algo-5/ 
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