
DESIGN AND ANALYSIS

OF ALGORITHMS (DAA)

(A34EC)

By :-

VIJAYKUMAR MANTRI,
ASSOCIATE PROFESSOR.

vijay_mantri.it@bvrit.ac.in

Algorithm

Textbook

DAA Unit III

Greedy Method

Unit III Syllabus

Greedy Method:

General Method

Applications –

Job Sequencing with Deadlines

Knapsack Problem

Minimum Cost Spanning Trees

Prim’s Algorithm.

Kruskal’s Algorithm

Single Source Shortest Path Problem.

Greedy Method – General Method

Greedy method is the most straightforward designed

technique.

As the name suggest they are short sighted in their approach

taking decision on the basis of the information immediately at

the hand without worrying about the effect these decision

may have in the future.

Greedy Method : A problem have 𝒏 inputs and require us to

obtain a subset that that satisfy some constraints.

Any subset that satisfy these constraints is called a Feasible

Solution.

A feasible solution that either maximizes or minimizes a

given objective function is called an Optimal Solution.

Greedy Method – General Method

A Greedy method suggests that one can devise an algorithm

that works in stages, considering one input at a time for

getting Optimal solution.

This is done by considering the inputs in an order determined

by some selection procedure.

This version of greedy technique is called Subset Paradigm.

For problems that do not call for the selection of an optimal

subset in the greedy method we made decisions by

considering the inputs in some order.

Each decision is made using Optimization Criteria that can

be computed using decisions already made.

This version of greedy technique is called Ordering

Paradigm.

Control algorithm for Greedy Method

1. 𝑨𝒍𝒈𝒐𝒓𝒊𝒕𝒉𝒎 𝑮𝒓𝒆𝒆𝒅𝒚 (𝒂, 𝒏)

2. // 𝒂, 𝟏 ∶ 𝒏 - 𝒄𝒐𝒏𝒕𝒂𝒊𝒏 𝒕𝒉𝒆 ‘𝒏’ 𝒊𝒏𝒑𝒖𝒕𝒔

3. *

4. 𝒔𝒐𝒍𝒖𝒕𝒊𝒐𝒏 ∶= 𝝓 ; // 𝑰𝒏𝒊𝒕𝒊𝒂𝒍𝒊𝒛𝒆 𝒕𝒉𝒆 𝒔𝒐𝒍𝒖𝒕𝒊𝒐𝒏.

5. 𝒇𝒐𝒓 𝒊 ∶= 𝟏 𝒕𝒐 𝒏 𝒅𝒐

6. *

7. 𝒙 ∶ = 𝑺𝒆𝒍𝒆𝒄𝒕 (𝒂);

8. 𝒊𝒇 𝑭𝒆𝒂𝒔𝒊𝒃𝒍𝒆(𝒔𝒐𝒍𝒖𝒕𝒊𝒐𝒏, 𝒙) 𝒕𝒉𝒆𝒏

9. 𝒔𝒐𝒍𝒖𝒕𝒊𝒐𝒏 ∶= 𝑼𝒏𝒊𝒐𝒏(𝒔𝒐𝒍𝒖𝒕𝒊𝒐𝒏, 𝒙);

10. +

11. 𝒓𝒆𝒕𝒖𝒓𝒏 𝒔𝒐𝒍𝒖𝒕𝒊𝒐𝒏;

12. +

Greedy Method – Examples

Cash Denominations – Bank Cashier clearing a Cheque of

Rs. 123,878/- & giving Cash Notes/Coins to Customer.

Machine Scheduling – Complete given number tasks (with

Start & Finish) time on number of Machines.

Knapsack Problem
We are given 𝒏 objects and an knapsack or bag.

Object 𝒊 had a weight 𝒘𝒊 and knapsack capacity 𝒎.

If a fraction 𝒙𝒊, 𝟎 ≤ 𝒙𝒊 ≤ 𝟏, of object 𝒊 placed into knapsack,

then profit of 𝒑𝒊𝒙𝒊 is earned.

The objective is to obtain a filling of knapsack that maximizes

the total profit earned.

As knapsack capacity is 𝒎, we require the total weight of all

chosen objects to be at most 𝒎.

Formally the problem can be stated as

𝑴𝒂𝒙𝒊𝒎𝒊𝒛𝒆 𝒑𝒊𝒙𝒊
𝟏≤𝒊≤𝒏

𝑺𝒖𝒃𝒋𝒆𝒄𝒕 𝒕𝒐 𝒘𝒊𝒙𝒊 ≤ 𝒎

𝟏≤𝒊≤𝒏

𝒂𝒏𝒅 𝟎 ≤ 𝒙𝒊 ≤ 𝟏, 𝟏 ≤ 𝒊 ≤ 𝒏

Algorithm for Knapsack Problem
1. Algorithm 𝑮𝒓𝒆𝒆𝒅𝒚𝑲𝒏𝒂𝒑𝒔𝒂𝒄𝒌 (𝒎, 𝒏)

2. // 𝒑,𝟏: 𝒏- and 𝒘,𝟏: 𝒏- contain the profits & weights of

3. // the 𝒏 object ordered such that

4. // 𝒑,𝒊- / 𝒘,𝒊- >= 𝒑,𝒊 + 𝟏- / 𝒘,𝒊 + 𝟏-

5. // 𝒎 is the Knapsack size and 𝒙,𝟏: 𝒏- is solution vector.

6. *

7. 𝒇𝒐𝒓 𝒊 ∶= 𝟏 𝒕𝒐 𝒏 𝒅𝒐 𝒙, 𝒊 - ∶= 𝟎. 𝟎; // 𝑰𝒏𝒊𝒕𝒊𝒂𝒍𝒊𝒛𝒆 𝒙.

8. 𝑼 ∶= 𝒎;

9. 𝒇𝒐𝒓 𝒊 ∶= 𝟏 𝒕𝒐 𝒏 𝒅𝒐

10. *

11. 𝒊𝒇 (𝒘,𝒊- > 𝑼) 𝒕𝒉𝒆𝒏 𝒃𝒓𝒆𝒂𝒌;

12. 𝒙,𝒊- ∶= 𝟏. 𝟎; 𝑼: = 𝑼 − 𝒘,𝒊-

13. +

14. 𝒊𝒇(𝒊 <= 𝒏) 𝒕𝒉𝒆𝒏 𝒙, 𝒊 - ∶= 𝑼/𝒘,𝒊-;

15. +

Knapsack Problem – Examples
Find an optimal solution to the knapsack instance(s).

𝑾𝒊 𝑷𝒊 𝑾𝒊 𝑷𝒊 𝑾𝒊 𝑷𝒊 𝑾𝒊 𝑷𝒊

m=750 n=15 m=165 n=10 m=26 n=5 m=190 n=6

70 135 23 92 12 24 56 50

73 139 31 57 7 13 59 50

77 149 29 49 11 23 80 64

80 150 44 68 8 15 64 46

82 156 53 60 (3) 9 16 75 50

87 163 38 43 (5) 17 5

90 173 63 67 m=104 n=8

94 184 85 84 25 350 m=50 n=7

98 192 89 87 35 400 31 70

106 201 82 72 45 450 10 20

110 210 (2) 5 20 20 39

113 214 25 70 19 37

115 221 3 8 4 7

118 229 2 5 3 5

120 240 (1) (4) 2 5 (6) 6 10

Knapsack Problem – Solution

(1) m = 750 n = 15
Wi 70 73 77 80 82 87 90 94 98 106 110 113 115 118 120

Pi 135 139 149 150 156 163 173 184 192 201 210 214 221 229 240

Pi/Wi 1.93 1.90 1.94 1.88 1.90 1.87 1.92 1.96 1.96 1.90 1.91 1.89 1.92 1.94 2.00

Xi 1 0 1 0 0 0 1 1 1 0 0 0 0.72 1 1
Profit
Pi*Wi 135 0 149 0 0 0 173 184 192 0 0 0 159 229 240

1) Total Profit = 1461

 (2) m = 165 n = 10

Wi 23 31 29 44 38 53 63 85 89 82

Pi 92 57 49 68 43 60 67 84 87 72

Pi/Wi 4.00 1.84 1.69 1.55 1.13 1.13 1.06 0.99 0.98 0.88

Xi 1 1 1 1 1 0 0 0 0 0
Profit

(Pi*Wi) 92 57 49 68 43 0 0 0 0 0

 (3) m = 26 n = 5
Wi 12 7 11 8 9

Pi 24 13 23 15 16

Pi/Wi 2.00 1.86 2.09 1.88 1.78

Xi 1 0 1 0.38 0

Profit (Pi*Wi) 24 0 23 6 0

2) Total Profit = 309

3) Total Profit = 53

Knapsack Problem – Solution

(4) m = 104 n = 8
Wi 25 35 45 5 25 3 2 2

Pi 350 400 450 20 70 8 5 5

Pi/Wi 14.00 11.43 10.00 4.00 2.80 2.67 2.50 2.50

Xi 1 1 0.98 0 0 0 0 0

Profit Pi*Wi 350 400 441 0 0 0 0 0

(5) m = 190 n = 6
Wi 56 59 80 64 75 17

Pi 50 50 64 46 50 5

Pi/Wi 0.89 0.85 0.80 0.72 0.67 0.29

Xi 1 1 0.94 0 0 0

Profit Pi*Wi 50 50 60 0 0 0

(6) m = 50 n = 7
Wi 31 10 20 19 4 3 6

Pi 70 20 39 37 7 5 10

Pi/Wi 2.26 2.00 1.95 1.95 1.75 1.67 1.67

Xi 1 1 0.45 0 0 0 0

Profit Pi*Wi 70 20 18 0 0 0 0

4) Total Profit = 1191

5) Total Profit = 160

6) Total Profit = 108

Job Sequencing with Deadlines

We are given a set of 𝒏 jobs.

Associated with job 𝒊 is an integer deadline 𝒅𝒊 ≥ 𝟎 and a profit

𝒑𝒊 > 𝟎.

If any job 𝒊 the profit 𝒑𝒊 is earned iff the job is completed by its

deadline.

To complete a job, one has to process the job on a machine for

one unit of time.

Only one machine is available for processing jobs.

A feasible solution for this problem is a subset 𝑱 of jobs such

that each job in this subject can be completed by this deadline.

The value of feasible solution 𝑱 is the sum of the profits of the

jobs in 𝑱 i.e. 𝒑𝒊𝒊 ∈ 𝑱

An optimal solution is a feasible solution with maximum value.

Since the problem involves the identification of a subset, it fits

the Subset Paradigm.

Job Sequencing with Deadlines Example 1. 𝒏 = 𝟓 (𝒑𝟏, 𝒑𝟐, 𝒑𝟑, 𝒑𝟒, 𝒑𝟓) = (𝟐𝟎, 𝟏𝟓, 𝟏𝟎, 𝟓, 𝟏)
 𝒅𝟏, 𝒅𝟐, 𝒅𝟑, 𝒅𝟒, 𝒅𝟓 = (𝟐, 𝟐, 𝟏, 𝟑, 𝟑)

Feasible solution Processing Sequence Value

1. (1) 1 20
2. (2) 2 15
3. (3) 3 10
4. (4) 4 5
5. (5) 5 1
6. (1, 2) 1, 2 or 2, 1 35
7. (1, 3) 3, 1 30
8. (1, 4) 1, 4 or 4, 1 25
9. (1, 5) 1, 5 or 5, 1 21
10. (2, 3) 3, 2 25
11. (2, 4) 2, 4 or 4, 2 20
12. (2, 5) 2, 5 or 5, 2 16
13. (1, 2, 4) 1, 2, 4 40
14. (1, 3, 5) 3, 1, 5 31

The Solution 13 is optimal

Job Sequencing with Deadlines Example 2. 𝒏 = 𝟒 (𝒑𝟏, 𝒑𝟐, 𝒑𝟑, 𝒑𝟒) = (𝟏𝟎𝟎, 𝟏𝟎, 𝟏𝟓, 𝟐𝟕)

 𝒅𝟏, 𝒅𝟐, 𝒅𝟑, 𝒅𝟒 = (𝟐, 𝟏, 𝟐, 𝟏)

Feasible solution Processing Sequence Value

1. (1, 2) 2, 1 110

2. (1, 3) 1, 3 or 3, 1 115

3. (1, 4) 4, 1 127

4. (2, 3) 2, 3 25

5. (3, 4) 4, 3 42

6. (1) 1 100

7. (2) 2 10

8. (3) 3 15

9. (4) 4 27

The Solution 3 is optimal

1. 𝑨𝒍𝒈𝒐𝒓𝒊𝒕𝒉𝒎 𝑱𝑺(𝒅, 𝑱, 𝒏)

2. // 𝒅 𝒊 ≥ 𝟏, 𝟏 ≤ 𝒊 ≤ 𝒏 𝒂𝒓𝒆 𝒕𝒉𝒆 𝒅𝒆𝒂𝒅𝒍𝒊𝒏𝒆𝒔, 𝒏 ≥ 𝟏.

3. // 𝑻𝒉𝒆 𝒋𝒐𝒃 𝒂𝒓𝒆 𝒐𝒓𝒅𝒆𝒓𝒆𝒅 𝒔𝒖𝒄𝒉 𝒕𝒉𝒂𝒕 𝒑 𝟏 ≥ 𝒑 𝟐 … .≥ 𝒑,𝒏-

4. // 𝑱 𝒊 𝒊𝒔 𝒕𝒉𝒆 𝒊𝒕𝒉 𝒋𝒐𝒃 𝒊𝒏 𝒕𝒉𝒆 𝒐𝒑𝒕𝒊𝒎𝒂𝒍 𝒔𝒐𝒍𝒖𝒕𝒊𝒐𝒏, 𝟏 ≤ 𝒊 ≤ 𝒌.

5. // 𝑨𝒍𝒔𝒐 𝒂𝒕 𝒕𝒆𝒓𝒎𝒊𝒏𝒂𝒕𝒊𝒐𝒏 𝒅 𝑱 𝒊 ≤ 𝒅,𝑱 𝒊 + 𝟏 -, 𝟏 ≤ 𝒊 < 𝒌.

6. *

7. 𝒅 𝟎 ∶= 𝑱 𝟎 ∶= 𝟎; // Initialize

8. 𝑱,𝟏- = 𝟏; // Include job 1

9. 𝒌 ≔ 𝟏;

10. f𝒐𝒓 𝒊 ≔ 𝟐 𝒕𝒐 𝒏 𝒅𝒐

11. *

12. // 𝑪𝒐𝒏𝒔𝒊𝒅𝒆𝒓 𝒋𝒐𝒃𝒔 𝒊𝒏 𝒏𝒐𝒏 𝒊𝒏𝒄𝒓𝒆𝒂𝒔𝒊𝒏𝒈 𝒐𝒓𝒅𝒆𝒓 𝒐𝒇 𝑷 𝒊 ; Find

13. // 𝒕𝒉𝒆 𝒑𝒐𝒔𝒊𝒕𝒊𝒐𝒏 𝒇𝒐𝒓 𝒊 𝒂𝒏𝒅 𝒄𝒉𝒆𝒄𝒌 𝒇𝒆𝒂𝒔𝒊𝒃𝒊𝒍𝒊𝒕𝒚 𝒐𝒇 𝒊𝒏𝒔𝒆𝒓𝒕𝒊𝒐𝒏

14. 𝒓 ≔ 𝒌;

Job Sequencing with Deadlines

Job Sequencing with Deadlines

15. 𝒘𝒉𝒊𝒍𝒆 𝒅 𝑱 𝒓 > 𝒅 𝒊 𝒂𝒏𝒅 𝒅 𝑱 𝒓 ≠ 𝒓 𝒅𝒐 𝒓 ∶= 𝒓 − 𝟏;

16. 𝒊𝒇 (𝒅 𝑱 𝒓 ≤ 𝒅 𝒊 𝒂𝒏𝒅 (𝒅,𝒊- > 𝒓))𝒕𝒉𝒆𝒏

17. *

18. // 𝑰𝒏𝒔𝒆𝒓𝒕 𝑰 𝒊𝒏𝒕𝒐 𝑱, -

19. 𝒇𝒐𝒓 𝒒 ≔ 𝒌 𝒕𝒐 𝒓 + 𝟏 𝒔𝒕𝒆𝒑 – 𝟏 𝒅𝒐 𝑱 𝒒 + 𝟏 ≔ 𝑱 𝒒 ;

20. 𝑱 𝒓 + 𝟏 ≔ 𝒊;

21. 𝒌 ≔ 𝒌 + 𝟏;

22. +

23. +

24. 𝒓𝒆𝒕𝒖𝒓𝒏 𝒌;

25. +

1. 𝑨𝒍𝒈𝒐𝒓𝒊𝒕𝒉𝒎 𝑮𝒓𝒆𝒆𝒅𝒚𝑱𝒐𝒃(𝒅, 𝑱, 𝒏)

2. // 𝑱 𝒊𝒔 𝒂 𝒔𝒆𝒕 𝒐𝒇 𝒋𝒐𝒃𝒔 𝒕𝒉𝒂𝒕 𝒄𝒂𝒏 𝒃𝒆 𝒄𝒐𝒎𝒑𝒍𝒆𝒕𝒆𝒅 𝒃𝒚 𝒕𝒉𝒊𝒆𝒓

3. // 𝒅𝒆𝒂𝒅𝒍𝒊𝒏𝒆𝒔

4. *

5. 𝑱 ≔ *𝟏+;

6. f𝒐𝒓 𝒊 ≔ 𝟐 𝒕𝒐 𝒏 𝒅𝒐

7. {

8. if (all jobs in 𝑱 ∪ *𝒊+ can be completed by their

9. deadlines) then

10. 𝑱: = 𝑱 ∪ *𝒊+

11. }

12. }

High Level description of

Job Sequencing algorithm

Job Sequencing with Deadlines Let’s revisit example 1 to know how Optimal Solution is found.

 𝒏 = 𝟓 (𝒑𝟏, 𝒑𝟐, 𝒑𝟑, 𝒑𝟒, 𝒑𝟓) = (𝟐𝟎, 𝟏𝟓, 𝟏𝟎, 𝟓, 𝟏)

 𝒅𝟏, 𝒅𝟐, 𝒅𝟑, 𝒅𝟒, 𝒅𝟓 = (𝟐, 𝟐, 𝟏, 𝟑, 𝟑)

The array P is sorted as per Profits, lets see how it works as per
algorithm we seen.

 J Assigned Slots Job Considered Action Profit

Φ none 1 Assign to [1, 2] 0

{1} [1, 2] 2 Assign to [0, 1] 20

{1, 2} [0, 1], [1, 2] 3 Cannot fit, reject 35

{1, 2} [0, 1], [1, 2] 4 Assign to [2, 3] 35

{1, 2, 4} [0, 1], [1, 2], [2, 3] 5 Reject 40

The Optimal Solution is J = {1, 2, 4} with a profit of 40.

Job Sequencing with Deadlines

Example 3 : Find Feasible solutions & Optimal Solution

for given jobs with deadlines for 𝒏 = 𝟕

(𝒑𝟏, 𝒑𝟐, 𝒑𝟑, 𝒑𝟒, 𝒑𝟓, 𝒑𝟔, 𝒑𝟕) = (𝟑, 𝟓, 𝟐𝟎, 𝟏𝟖, 𝟏, 𝟔, 𝟑𝟎)

𝒅𝟏, 𝒅𝟐, 𝒅𝟑, 𝒅𝟒, 𝒅𝟓, 𝒅𝟔, 𝒅𝟕 = (𝟏, 𝟑, 𝟒, 𝟑, 𝟐, 𝟏, 𝟐)

Also show the Optimal Solution generated by function

(algorithm) JS. (Hint : Answer is J6, J7, J4 & J3)

Example 4 : Find Feasible solutions & Optimal Solution

for given jobs with deadlines for 𝒏 = 𝟕

(𝒑𝟏, 𝒑𝟐, 𝒑𝟑, 𝒑𝟒, 𝒑𝟓, 𝒑𝟔, 𝒑𝟕) = (𝟑, 𝟓, 𝟐𝟎, 𝟏𝟖, 𝟏, 𝟔, 𝟑𝟎)

𝒅𝟏, 𝒅𝟐, 𝒅𝟑, 𝒅𝟒, 𝒅𝟓, 𝒅𝟔, 𝒅𝟕 = (𝟏, 𝟐, 𝟒, 𝟐, 𝟐, 𝟏, 𝟐)

Also show the Optimal Solution generated by function

(algorithm) JS. (Hint : Be careful with deadlines)

Minimum-Cost Spanning Trees

Let 𝑮 = (𝑽, 𝑬) be an undirected connected graph with

vertices ‘𝑽’ and edges ‘𝑬’.

A sub-graph 𝐓 = (𝑽, 𝑬’) of the 𝑮 is a Spanning tree of 𝑮 iff ‘𝑻’

is a tree.

The figure shows the Complete Graph with 4 Nodes and

three spanning trees of the same.

The spanning trees have many applications like Analysis of

Electrical Circuits, Shortest route problems, etc.

Minimum-Cost Spanning Trees

The problem is to generate a minimal subgraph 𝑮’ of 𝑮 such

that 𝑮’ = (𝑽, 𝑬′) where 𝑬′ is the subset of 𝑬,& 𝑮’ is a Minimal

Subgraph (minimum spanning tree).

A minimal subgraph is one with the fewest number of edges.

Any connected graph with 𝒏 vertices must have at least 𝒏 − 𝟏
edges and all connected graphs with 𝒏 − 𝟏 edges are trees.

The spanning trees of 𝑮 represent all feasible choices

Each and every edge will contain the given non-negative

length.

Connect all the nodes with edge present in set 𝑬’ and weight

has to be minimum i.e. we are interested in finding a

spanning tree of 𝑮 with minimum cost.

The cost of a spanning tree is the sum of the costs of the

edges in that tree.

Minimum-Cost Spanning Trees

The figure shows a Graph & its minimum-cost spanning tree.

There are 2 method to determine a minimum-cost spanning

tree namely Kruskal’s Algorithm and Prim’s Algorithm.

(a) (b)

1

6 7 3

2

5

4

16

12

14

22

25

10

1

6 7 3

2

5

4

28

16

12

18

22

25

24

10

14

Kruskal’s Algorithm

In Kruskal's algorithm the selection function chooses edges in

increasing order of length without worrying too much about

their connection to previously chosen edges, except that

never to form a cycle.

The result is a forest of trees that grows until all the trees in a

forest (all the components) merge in a single tree.

In this algorithm, a minimum cost-spanning tree ‘𝑻’ is built

edge by edge.

Edge are considered for inclusion in ‘𝑻’ in increasing order of

their cost.

An edge is included in ‘𝑻’ if it doesn’t form a cycle with edge

already in 𝑻.

To find the minimum-cost spanning tree the edge are

inserted to tree in increasing order of their cost.

Kruskal’s Algorithm

1. Let 𝑮 = (𝑽, 𝑬) be a connected graph with weights assigned

to each edge.

2. Select any edge of minimum value of 𝑮. This is the first

edge of minimal spanning tree 𝑻.

3. Select any edge (𝒗,𝒘) of 𝑬 from remaining edges of 𝑮
having minimum value, which will not form a closed path

with the edges already included in 𝑻.

4. Step 3 is repeated until 𝑻 contains 𝒏 − 𝟏 edges where 𝒏 is

number of vertices of 𝑮.

5. Now the tree 𝑻 becomes Minimal-Cost Spanning Tree of 𝑮.

Kruskal’s Algorithm – Early form of

Minimum-Cost Spanning

Tree algorithm

1. 𝒕 ≔ ∅;

2. 𝒘𝒉𝒊𝒍𝒆 (𝒕 𝒉𝒂𝒔 𝒍𝒆𝒔𝒔 𝒕𝒉𝒂𝒏 𝒏 − 𝟏 𝒆𝒅𝒈𝒆𝒔 𝒂𝒏𝒅 (𝑬 ≠ ∅))𝒅𝒐

3. *

4. 𝑪𝒉𝒐𝒐𝒔𝒆 𝒂𝒏 𝒆𝒅𝒈𝒆 (𝒖,𝒘) 𝒇𝒓𝒐𝒎 𝑬 𝒐𝒇 𝒍𝒐𝒘𝒆𝒔𝒕 𝒄𝒐𝒔𝒕;

5. 𝑫𝒆𝒍𝒆𝒕𝒆 (𝒖,𝒘) 𝒇𝒓𝒐𝒎 𝑬;

6. 𝒊𝒇 (𝒖,𝒘) 𝒅𝒐𝒆𝒔 𝒏𝒐𝒕 𝒄𝒓𝒆𝒂𝒕𝒆 𝒂 𝒄𝒚𝒄𝒍𝒆 𝒊𝒏 𝒕 𝒕𝒉𝒆𝒏 𝒂𝒅𝒅 (𝒖,𝒘) 𝒕𝒐 𝒕;

7. 𝒆𝒍𝒔𝒆 𝒅𝒊𝒔𝒄𝒂𝒓𝒅 (𝒖,𝒘)

8. +

1

6 7 3

2

5

4

1

6 7 3

2

5

4

10

1

6 7 3

2

5

4

12

10

1

6 7 3

2

5

4

12

14

10

1

6 7 3

2

5

4

16

12

14

10

1

6 7 3

2

5

4

16

12

14

22

10

Stages in Kruskal’s Algorithm

(a) (b) (c)

(d) (e) (f)

Kruskal’s Algorithm

Original Graph G

Minimum-Cost Spanning

Tree T of G.

Total Cost = 99

1

6 7 3

2

5

4

16

12

14

22

25

10

1

6 7 3

2

5

4

28

16

12

18

22

25

24

10

14

Kruskal’s Algorithm Examples

V1

V5

V2

V4

V6 V3

16

18

19
6

21

32

11

14

5

10

V1

V5

V2

V4

V6 V3

16

18

6

11 5

V1

V3

V5

V2 V4 V8

V6

V7

55
25

45

30

5 40
20

50

15

35
10

V1

V3

V5

V2 V4 V8

V6

V7

25
30

5 40
20

15

10

Total Cost = 56 Total Cost = 145

Prim’s Algorithm

Let 𝑮 be a connected graph with weights assigned to each

edge.

In Prim's algorithm, we start from an arbitrary vertex (root).

At each stage, add a new branch (edge) to the tree already

constructed; the algorithm halts when all the vertices in the

graph have been reached.

The Prims algorithm will start with a tree that includes only a

minimum cost edge of 𝑮.

Then, edges are added to the tree one by one.

The next edge (𝒊, 𝒋) to be added in such that 𝒊 is a vertex

included in the tree, 𝒋 is a vertex not yet included, and cost of

(𝒊, 𝒋), 𝒄𝒐𝒔𝒕,𝒊, 𝒋- is minimum among all the edges.

Prim’s Algorithm

1. Let 𝑮 be a connected graph with weights assigned to each

edge.

2. First let 𝑻 be the minimal spanning tree consists of any

vertex 𝑽 of 𝑮.

3. Among all edges not in 𝑻, which are incident on a vertex

(neighborhood of vertex) in 𝑻, and not forming a closed path

when added to 𝑻, select the minimum cost edge and add it

to 𝑻.

4. The step 3 is repeated until we select 𝒏 − 𝟏 edges which

covers 𝒏 vertices in 𝑮 resulting in Minimal-Cost Spanning

Tree 𝑻.

5. Now the tree 𝑻 becomes Minimal-Cost Spanning Tree of 𝑮.

1

6 7 3

2

5

4

1

6 7 3

2

5

4

10

Stages in Prim’s Algorithm

(a) (b) (c)

(d) (e) (f)

1

6 7 3

2

5

4

25

10

1

6 7 3

2

5

4
22

10

25

1

6 7 3

2

5

4
22

12
25

10

1

6 7 3

2

5

4

16

12
14

22

10

Prim’s Algorithm

Original Graph G

Minimum-Cost Spanning

Tree T of G.

Total Cost = 99

1

6 7 3

2

5

4

16

12

14

22

25

10

1

6 7 3

2

5

4

28

16

12

18

22

25

24

10

14

Prim’s Algorithm Examples

V1

V5

V2

V4

V6 V3

16

18

19
6

21

32

11

14

5

10

V1

V5

V2

V4

V6 V3

16

18

6

11 5

V1

V3

V5

V2 V4 V8

V6

V7

55
25

45

30

5 40
20

50

15

35
10

V1

V3

V5

V2 V4 V8

V6

V7

25
30

5 40
20

15

10

Total Cost = 56 Total Cost = 145

Compute a minimum

cost spanning tree

using

a) Kruskal’s Algorithm

&

b) Prim’s Algorithm

https://www.geeksforgeeks.org/prims-

minimum-spanning-tree-mst-greedy-

algo-5/

https://www.geeksforgeeks.org/prims-minimum-spanning-tree-mst-greedy-algo-5/
https://www.geeksforgeeks.org/prims-minimum-spanning-tree-mst-greedy-algo-5/
https://www.geeksforgeeks.org/prims-minimum-spanning-tree-mst-greedy-algo-5/
https://www.geeksforgeeks.org/prims-minimum-spanning-tree-mst-greedy-algo-5/
https://www.geeksforgeeks.org/prims-minimum-spanning-tree-mst-greedy-algo-5/
https://www.geeksforgeeks.org/prims-minimum-spanning-tree-mst-greedy-algo-5/
https://www.geeksforgeeks.org/prims-minimum-spanning-tree-mst-greedy-algo-5/
https://www.geeksforgeeks.org/prims-minimum-spanning-tree-mst-greedy-algo-5/
https://www.geeksforgeeks.org/prims-minimum-spanning-tree-mst-greedy-algo-5/
https://www.geeksforgeeks.org/prims-minimum-spanning-tree-mst-greedy-algo-5/
https://www.geeksforgeeks.org/prims-minimum-spanning-tree-mst-greedy-algo-5/
https://www.geeksforgeeks.org/prims-minimum-spanning-tree-mst-greedy-algo-5/
https://www.geeksforgeeks.org/prims-minimum-spanning-tree-mst-greedy-algo-5/
https://www.geeksforgeeks.org/prims-minimum-spanning-tree-mst-greedy-algo-5/
https://www.geeksforgeeks.org/prims-minimum-spanning-tree-mst-greedy-algo-5/

