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Algorithm 



Course Objective 

Relate the algorithm properties with mathematical 

approaches to design and analyze real time 

problems. 

Make use of optimization techniques to solve 

complex problems in easy ways. 

Ability to perform dynamic actions for the particular 

problem based on specific constraints. 

Construction of state space tree in order to reduce 

the number of solutions and to find the optimal 

solution. 

 Design elementary deterministic and randomized 

algorithms to solve computational problems. 



Course Outcomes 

Outcomes: Upon the successful completion of the 

course, the student will be able: 

Develop algorithms, as well as to analyze and measure 

the complexity in terms of space and time. 

Apply the knowledge of optimization techniques to develop 

and analyze algorithms for both theoretical and practical 

scenarios. 

Apply knowledge of mathematics, science, and 

engineering to real world problems. 

Build optimal solutions in personal and real time 

applications. 

Develop deterministic and randomized algorithms to solve 

computational problems. 



Textbook 



DAA Unit I 

Introduction 



Unit I Syllabus 

Introduction 
Algorithm 

Pseudo Code for Expressing Algorithms 

Performance Analysis   

Space Complexity 

Time Complexity 

Asymptotic Notation –  

Big Oh (Ο) Notation 

Omega (Ω) Notation 

Theta (ϴ) Notation and  

Little Oh (o) Notation 



General Discussion about DAA 

In Computer Science, the Design and Analysis of Algorithms is 

the process of finding the computational complexity of 

algorithms – the amount of time, storage, or other resources 

needed to execute them.  

Designing algorithm is necessary before writing the program 

code as it (algorithm) explains the logic even before the code is 

developed. 

The code can be written in any programming language but the 

algorithm is written in a common language. 

As we know that for solution of any problem there may exist 

many versions of the same program written by same or different 

programmers. Just reading the source code the efficiency of the 

code can't be judged. 

So we design algorithms and analyze them for Time 

Complexity, Space Complexity, Efficiency etc. 



General Discussion about DAA 

We can go about creating a program and in most of the 

cases we might be able to make a decent one as well but 

some else used algorithm and design to make it more 

optimized and interactive, everyone will definitely consider 

the optimized one. 

Knowing algorithm and design we can do some work prior to 

starting the coding giving us a proper and optimized 

techniques to code a program. 

If we are going to develop programs, we need to have 

knowledge of how to design and analyze algorithms to make 

an effective algorithm. 

Figure out how to apply technique for analysis algorithm that 

are solve many problems these technique are used to solve 

problem and find best case, average case, worst case. 



Algorithm 



Algorithm 

What is an Algorithm? 

Webster's dictionary defines Algorithm as “Any special 

method of solving a certain kind of problem." 

Informal Definition: An Algorithm is any well-defined 

computational procedure that takes some value or set of 

values as Input and produces a set of values or some 

value as output. Thus algorithm is a sequence of 

computational steps that transforms the I/P into the O/P. 

Formal Definition: An Algorithm is a finite set of 

instructions that, if followed, accomplishes a particular 

task. 



Algorithm 

In addition, all algorithms should satisfy the following criteria. 

1. INPUT   Zero or more quantities are externally supplied. 

2. OUTPUT   At least one quantity is produced. 

3. DEFINITENESS  Each instruction is clear and 

unambiguous. For example, each operation must be definite, 

meaning that it must be perfectly clear what should be done. 

 “Compute 5/0" or "add 6 or 7 to x" are not permitted because it is not 

clear what the result is or which of the two possibilities should be done. 

4. FINITENESS  If we trace out the instructions of an 

algorithm, then for all cases, the algorithm terminates after a 

finite no of steps. 

5. EFFECTIVENESS  Every instruction must very basic so 

that it can be carried out, in principle, by a person using only 

pencil & paper. 



Algorithm 

Issues or study of Algorithms: 
 

How to devise or design algorithms  creating and 

algorithm. 

How to express algorithms  definiteness. 

How to validate algorithms  fitness. 

How to analyze algorithms  time and space 

complexity.  

How to test a program - Testing the algorithm  

checking for error (Debugging), Program Proving, 

Testing. 



Algorithm Specification 

Algorithm can be described in three ways. 

1.Natural language like English : When this way is 

chosen care should be taken, we should ensure 

that each & every statement is definite. 

2.Graphic representation called flowchart : This 

method will work well when the algorithm is small & 

simple. 

3.Pseudo-code Method : In this method, we should 

typically describe algorithms as program, which 

resembles language like PASCAL & ALGOL. 



Pseudo Code for Expressing 

Algorithms 
Pseudo-Code Conventions 

1. Comments begin with // and continue until the end of line. 

2. Blocks are indicated with matching braces  { and }. 

3. An identifier begins with a letter. The data types of variables are 

not explicitly declared. 

4. Compound data types can be formed with records. Here is an 

example, 
Node = Record 

{ 

   data type – 1   data-1; 

 . 

 . 

 . 

  data type – n  data – n; 

  node * link; 

} 

Here link is a pointer to the record type node. Individual data items 

of a record can be accessed with  and period. 

 



Pseudo Code for Expressing 

Algorithms 
5. Assignment of values to variables is done using the assignment 

statement. 

 <Variable>:= <expression>; 

6. There are two Boolean values TRUE and FALSE. 

  Logical Operators       AND, OR, NOT 

  Relational Operators   <, <=,>,>=, =, != 

7. The following looping statements are employed. 

 While, For and repeat-until 

While Loop: 

  While < condition > do 

  { 

   <statement-1> 

    . 

    . 

   <statement-n> 

   } 

 



Pseudo Code for Expressing 

Algorithms 
For Loop: 

 For variable: = value-1 to value-2 step step do 

  { 

    <statement-1> 

  . 

  . 

   <statement-n> 

 } 

 

repeat-until: 

 repeat 

   <statement-1> 

  . 

  . 

   <statement-n> 

 until<condition> 



Pseudo Code for Expressing Algorithms 

8. A conditional statement has the following forms. 

   If <condition> then <Statement> 

  If <condition> then <Statement-1>  

         Else <Statement-2> 

  Case statement: 

Case 

{ 

 : <condition-1> : <statement-1> 

   . 

 : <condition-n> : <statement-n> 

 : else : <statement-n+1> 

} 

9. Input and output are done using the instructions read & write. 

10. There is only one type of procedure: Algorithm. The algorithm 

consists of heading & body, the heading takes the form, 

 Algorithm Name (Parameter lists) 

11. We use notation a [i : j] to indicate Array elements a [ i ] to a [ j ] 



Example : Max of n numbers 

1. algorithm Max(A, n) 

2. // A is an array of size n 

3. { 

4.  Result := A[1]; 

5.  for i := 2 to n do 

6.    if A[ i ] > Result then 

7.          Result := A[ i ]; 

8.   return Result; 

9.   } 

 

In this algorithm (named Max), A & n are procedure 

parameters. Result & i are Local variables. 



Example : Selection Sort 

Suppose we Must devise an algorithm that sorts a 

collection of n>=1 elements of arbitrary type. 

A Simple solution given by the following. 

From those elements that are currently unsorted, find 

the smallest & place it next in the sorted list. 

Simple Algorithm : 

1.  for i:= 1 to n do 

2.   { 

3. Examine a[ i ] to a[n] and suppose the smallest 

element is at a[ j ]; 

4. Interchange a[ i ] and a[ j ]; 

5.   } 



Example : Selection Sort 

Finding the smallest element (say a[ j ]) and interchanging 

it with a[ i ] 

We can solve the latter problem using the code, 

   t    := a[ i ]; 

   a[ i ] := a[ j ]; 

   a[ j ] := t; 

The first subtask can be solved by assuming the minimum 

is a[ i ]; checking a[ i ] with a[ i+1 ], a[ i+2 ]……., and 

whenever a smaller element is found, regarding it as the 

new minimum. a[ n ] is compared with the current 

minimum. 

Putting all these observations together, we get the 

algorithm Selection sort. 



Example : Selection Sort 

Theorem: Algorithm selection sort(a, n) correctly sorts a set 

of n>=1 elements .The result remains is a a[ 1:n ] such that 

a[1] <= a[2] ….<=a[n]. 

Selection Sort: Selection Sort begins by finding the least 

element in the list. This element is moved to the front.  

Then the least element among the remaining element is 

found out and put into second position.  

This procedure is repeated till the entire list has been 

studied. 

Example: LIST L = 3, 5, 4, 1, 2 

1 is selected   1, 5, 4, 3, 2 

2 is selected   1, 2, 4, 3, 5 

3 is selected   1, 2, 3, 4, 5 

4 is selected   1, 2, 3, 4, 5 



Example : Selection Sort 

1. Algorithm selection sort (a, n) 

 2. // Sort the array a[1:n] into non-decreasing order. 

 3.  { 

 4.  for i:=1 to n do 

 5. { 

 6.    j := i; 

 7.    for k := i+1 to n do 

 8.      if (a[ k ] < a[ j ]) then j := k; 

 9.        t := a[ i ]; 

 10.       a[ i ] := a[ j ]; 

 11.       a[ j ] := t; 

 12. } 

13. }  



Recursive Algorithms 

A Recursive function is a function that is defined in terms of 

itself. 

Similarly, an algorithm is said to be Recursive Algorithm if 

the same algorithm is invoked in the body. 

An algorithm that calls itself is Direct Recursive. 

Algorithm ‘A’ is said to be Indirect Recursive if it calls 

another algorithm say ‘B’ which in turns calls ‘A’. 

The Recursive mechanism, are externally powerful, but 

even more importantly, many times they can express an 

otherwise complex process very clearly. 

The following 2 examples show how to develop a recursive 

algorithms. 



Example : Towers of Hanoi 

It is Fashioned after the ancient tower of Brahma ritual. 

According to legend, at the time the world was created, 

there was a diamond tower (labeled A) with 64 golden disks. 

The disks were of decreasing size and were stacked on the 

tower in decreasing order of size bottom to top. 

Besides these tower there were two other diamond towers 

(labeled B & C) 

Since the time of creation, Brahman priests have been 

attempting to move the disks from tower A to tower B using 

tower C, for intermediate storage. 

As the disks are very heavy, they can be moved only one at 

a time. 

In addition, at no time can a disk be on top of a smaller disk. 

According to legend, the world will come to an end when the 

priest have completed this task. 



Example : Towers of Hanoi 



Example : Towers of Hanoi 

A very elegant solution results from the use of recursion. 

Assume that the number of disks is ‘n’. 

To get the largest disk to the bottom of tower B, we move 

the remaining ‘n-1’ disks to tower C and then move the 

largest to tower B. 

Now we are left with the tasks of moving the disks from 

tower C to B. 

To do this, we have tower A and B available. 

The fact, that towers B has a disk on it can be ignored as 

the disks larger than the disks being moved from tower C 

and so any disk can be placed on top of it. 



Example : Towers of Hanoi 

1. Algorithm TowersOfHanoi (n, x, y, z) 

2. //Move the top „n‟ disks from tower x to tower y. 

3. { 

4.   if(n>=1) then 

5.   { 

6.     TowersOfHanoi(n-1, x, z, y); 

7. Write(“Move Top Disk from Tower”, x , “to Top of 

Tower”, y); 

8. TowersOfHanoi(n-1, z, y, x); 

9.     } 

10. } 



Example : Permutation Generator 

Given a set of n>=1 elements, the problem is to print all 

possible permutations of this set. 

For example, if the set is {a, b, c} ,then the set of 

permutation is, { (a,b,c),(a,c,b),(b,a,c),(b,c,a),(c,a,b),(c,b,a) } 

It is easy to see that given ‘n’ elements there are n! different 

permutations. 

A simple algorithm can be obtained by looking at the case of  

4 statement (a, b, c, d) 

The Answer can be constructed by writing 

1.  a followed by all the permutations of (b, c, d) 

2.  b followed by all the permutations of (a, c, d) 

3.  c followed by all the permutations of (a, b, d) 

4.  d followed by all the permutations of (a, b, c) 



Example : Permutation Generator 

1. Algorithm Perm(a, k, n) 

2. { 

3.   if (k = n) then write (a[ 1:n ]);   // Output 

permutation 

4.    else    //a[ k:n ] has more than one permutation 

5.            // Generate this recursively. 

6.      for i := k to n do 

7.        { 

8.          t := a[ k ];  a[ k ] := a[ i ]; a[ i ] := t; 

9.          Perm(a, k+1, n); 

10.        //All permutation of a[ k+1 : n ] 

11.        t := a[ k ];  a[ k ] := a[ i ]; a[ i ] := t; 

12.       } 

13.  } 



Performance Analysis 

There are many criteria upon which we can judge an 

algorithm 

1. Does it do what we want it to do? 

2. Does it work correctly according to the original specifications 

of the task? 

3. Is there documentation that describes how to use it and how 

it works? 

4. Are procedures created in such a way that they perform 

logical sub-functions? 

5. Is the Code readable? 

These criteria are important for writing software. 

There are other Criteria for judging algorithms that have a 

more direct relationship to performance – Space & Time. 



Performance Analysis 

 

Space Complexity : The space complexity of an algorithm 

is the amount of memory it needs to run to completion. 

 

Time Complexity : The time complexity of an algorithm is 

the amount of computer time it needs to run to compilation. 



Space Complexity 

Space Complexity : The Space needed by each of these 

algorithms is seen to be the Sum of the following component. 

1. A fixed part that is independent of the characteristics (eg: 

number, size) of the inputs and outputs. This part typically 

includes the instruction space (i.e. Space for the code), space 

for simple variable and fixed-size component variables (also 

called aggregate), space for constants, and so on. 

2. A variable part that consists of the space needed by component 

variables whose size is dependent on the particular problem 

instance being solved, the space needed by referenced 

variables (to the extent that is depends on instance 

characteristics), and the recursion stack space. 

The space requirement S(P) of any algorithm P may therefore be 

written as, 

 S(P) = c + SP (Instance characteristics) 

Where „c‟ is a constant. 



Example : Space Complexity 

Algorithm : Simple arithmetic function 

Algorithm  abc (a, b, c) 

{ 

    return a + b + b * c + (a + b - c) / (a + b) + 4.00; 

 } 

 

Here the problem instance is characterized by the specific 

values of a, b and c. 

If we assume one word is sufficient to store values of a, b, c 

and the result, the space needed by abc is independent of 

instance characteristics. 

So, SP (Instance characteristics) i.e  

Sabc(Instance characteristics) = 0 



Example : Space Complexity 

Algorithm : Iterative function for summing a list of numbers 

1. Algorithm Sum (a, n) 

2.  { 

3.  s := 0.0; 

4.  for i := 1 to n do 

5.  s := s + a[ i ]; 

6.  return s; 

7.  } 

The problem instances for this algorithm are characterized by n, 

the number of elements to be summed.  

The space needed by „n‟ is one word, since it is of type integer. 

The space needed by „a‟ is the space needed by variables of type 

array of floating point numbers. 

This is at least „n‟ words, since „a‟ must be large enough to hold 

the „n‟ elements to be summed. 

    So, we obtain SSum(n) >= (n + 3)   

    (n for a[ ], one each for n, i and s) 



Example : Space Complexity 

Algorithm : Recursive function for summing a list of numbers 

1. Algorithm RSum (a, n) 

2.  { 

3.  if (n <= 0) then return 0.0; 

4.  else return RSum (a, n-1) + a[ n ]; 

5.  } 

 

Similar to Sum function, the problem instances for this algorithm 

are characterized by n. 

The recursion stack space includes space for formal parameters, 

the local variables and return addresses. Assume return 

address requires one word. 

So each call to RSum requires at least three words (including 

space for values of n, return address & pointer to a [ ]). 

Since depth of recursion is n+1, the recursion stack space 

needed is > = 3 (n+1). 



Time Complexity 

Time Complexity : The time T(P) taken by a program P is  the 

sum of the Compile Time and the Run Time (execution time). 

The compile time does not depend on the instance 

characteristics.  

Also we may assume that a compiled program will be run 

several times without recompilation . 

This run time is denoted by tp (instance characteristics). 

As many of factors tp depends on are not known at the time a 

program is conceived, we will attempt only to estimate tp. 

We will calculate count for total number of operations – Steps. 

A program Step is a syntactically or semantically meaningful 

program segment whose execution time is independent of the 

instance characteristics. 



Time Complexity 

The number of steps any problem statement is assigned depends 

on the kind of statement. For example, 

Comments    0 steps Non executable statements. 

 Assignment Statements   1 steps. 

 [Which does not involve any calls to other algorithms] 

Interactive statements (loops) such as for, while & repeat-until  

Control part of the statement. 

We can determine the number of steps needed by a program to 

solve a particular problem instance in two ways. 

1.  Introduce variable count into programs 

2.  Tabular method 

 Determine the total number of steps contributed by each 

statement step per execution  frequency 

 Add up the contribution of all statements 



Time Complexity of Sum using Count 

We introduce a variable, 

count into the program. 

This is global variable with 

initial value 0.  

Statement to increment 

count by the appropriate 

amount are introduced 

into the program. 

This is done so that each 

time a statement in the 

original program is 

executes count is 

incremented by the step 

count of that statement. 

Each invocation of Sum 

executes a total of 2n+3 

steps 

1. Algorithm Sum (a, n) 

2. { 

3.   s= 0.0; count := count+1; 

4.   for i := 1 to n do 

5.   { 

6.     count := count + 1; //For for loop 

7.     s := s+ a [ i ]; 

8.     count := count + 1;  

9.             // For assignment 

10.   } 

11.   count := count + 1; // For last for 

12.   count := count + 1; // For return 

13.    return s; 

14.  } 



Time Complexity of Sum using Table 

 The second method to determine the step count of an algorithm is 

to build a table in which we list the total number of steps contributes 

by each statement. 

First determine the number of steps per execution (s/e) of the 

statement and the total number of times (i.e., frequency) each 

statement is executed. 

By combining these two quantities, the total contribution of all 

statements, the step count for the entire algorithm is obtained. 

Statement s/e Frequency Total 

1.    Algorithm Sum (a, n) 

2.    { 

3.       s := 0.0; 

4.       for i := 1 to n do 

5.        s := s + a[ i ]; 

6.        return s; 

7.    } 

0 

0 

1 

1 

1 

1 

0 

- 

- 

1 

n+1 

n 

1 

- 

0 

0 

1 

n+1 

n 

1 

0 

Total     2n + 3 



Time Complexity of RSum using Count 

1. Algorithm RSum (a, n) 

2. { 

3.   count := count + 1; // For if cond. 

4.   if(n<=0) then 

5.   { 

6.     count := count + 1; //For return 

7.      return 0.0; 

8.   } 

9.   else 

10.   { 

11.   count := count + 1; // For call 

12.    return RSum(a, n-1) + a[n]; 

13.   } 

14.  } 



Time Complexity of RSum using Count 

When the statements to increment count introduced into RSum  

algorithm we get algorithm as shown in previous slide. 

Let tRSum(n) be the increase in the value of count at end of Algo.  

We see that tRSum(0) = 2. 

& when n>0, it‟s 2 + tRSum(n-1) 

When analyzing a recursive program for its step count 

tRSum(n) =   
𝟐                                𝒊𝒇 𝒏 = 𝟎

𝟐 + tRSum(n-1)           if n>0
 

These recursive formulas are referred as recurrence relations. 

tRSum(n) = 2 + tRSum(n-1) 

tRSum(n) = 2 + 2 + tRSum(n-2) = 2(2) + tRSum(n-2)  

………. 

tRSum(n) = n(2) + tRSum(0) 

tRSum(n) = 2n + 2 n>=0 

So the step count for RSum is 2n + 2 



Time Complexity of RSum using Table 

The below table gives the step count for RSum, note that the else 

clause has been given count of 1 + tRSum (n-1). 

This is the total cost of this line each time it is executed. 

It includes all the steps that get executed as a result of invocation of 

RSum from the else clause. 

Statement s/e 
Frequency 

n =0        n>0 

Total Steps 

n =0        n>0 

1. Algorithm RSum (a, n) 

2.  { 

3.    if (n <= 0) then 

4.      return 0.0; 

5.    else  

6.     return RSum(a, n-1)+a[ n ]; 

7.  } 

0 

0 

1 

1 

0 

1+x 

0 

- 

- 

1 

1 

- 

0 

- 

- 

- 

1 

0 

- 

1 

- 

0 

0 

1 

1 

0 

0 

0 

0 

0 

1 

0 

0 

1+x 

0 

Total     2 2 + x 

x = tRSum (n-1) 



1. Algorithm Add(a, b, c, m, n) 

2. { 

3.  for i := 1 to m do 

4. {   

5.   count := count + 1; // For „for i‟. 

6.    for j := 1 to n do 

7.    { 

8.      count := count + 1; //For „for j‟ 

9.      c [i, j] := a [i, j] + b [i, j]; 

10.      count := count + 1; //For assignment 

11.    } 

12.     count := count + 1; // For last time of „for j‟ 

13.   } 

14.   count := count + 1; // For last time of „for i‟ 

15.  } 

Time Complexity of Matrix Addition 

algorithm using Count 



Algorithm Add shown in previous slide will be used to add 

two  

 m x n matrices a & b. 

We observe that for j is executed n times for each value of i 

or a total of mn times (so for loop & addition of elements 

executed for a total of 2mn times). 

also for i is executed m times (so for i loop & last of for j 

loop executed for a total of 2m times) 

and line 14 (last of for i) executed once. 

If count is 0 to begin, it will be 2mn + 2m + 1 when algorithm 

terminates. 

Time Complexity of Matrix Addition 

algorithm using Count 



Time Complexity of Matrix Addition 

algorithm using Tabular Method 

 Note that the frequency of the first for loop is m + 1 & not m. 

And similarly frequency of the second for loop is m (n + 1). 

Total step count for Add algorithm is 2mn + 2m + 1 

Statement s/e Frequency Total 

1. Algorithm Add(a, b, c, m, n) 

2. { 

3.  for i := 1 to m do 

4.    for j := 1 to n do 

5.        c [i, j] := a [i, j] + b [i, j]; 

6.  } 

0 

0 

1 

1 

1 

0 

- 

- 

m + 1 

m(n+1) 

mn 

- 

0 

0 

m + 1 

m(n+1) 

mn 

0 

Total 
    2mn +  

2m + 1 



Time Complexity - Exercise 

Write Algorithm and Find Time Complexity for 

Fibonacci Series 

Matrix Multiplication – Square Matrix 

Matrix Multiplication – Non Square Matrix – 

A(M,N) & B(N,K) 

Try to find time complexity for few more 

Programs/Algorithms you studied previously. 



Summary of Time Complexity 

The time complexity of an algorithm is given by the number of 

steps taken by Algorithm to compute the function is was written for. 

The number of steps is itself function of instance characteristics. 

Any specific instance may have several characteristics like no of 

inputs/outputs, magnitude of input/output, etc. 

Sometimes we want to know how run time increases as number of 

inputs increase. 

The examples we have seen are simple that the time complexities 

are function of simple characteristics like no of inputs or no of rows 

& columns, etc. 

For many algorithm, the time complexity is not solely dependent on 

no of inputs or output. Ex : Searching. 

In such situation where chosen parameters are not sufficient to 

find step, count we can define three types of step counts –  

 Best Case, Worst Case & Average Case. 



Summary of Time Complexity 

Best Case : The Best case count is the minimum number of steps 

that can be executed for the given parameters. 

Worst Case : The Worst case count is the maximum number of 

steps that can be executed for the given parameters. 

Average Case : The average case count is the average number of 

steps that can be executed for the given parameters. 

Our motivation is to determine step count to compare time 

complexities of two algorithm that compute same function. 

Determining the exact step count (Best Case, Worst Case & 

Average Case) of algorithm is difficult task. 

Complexity: Complexity refers to the rate at which the storage 

time grows as a function of the problem size. 

Asymptotic Analysis: Expressing the complexity in term of its 

relationship to know function. This type analysis is called 

asymptotic analysis. 

 



Asymptotic Notations (Ο, Ω, ϴ) 

Let us see some terminology that enables us to make meaningful 

statements about the time & space complexities of algorithm. 

We will use functions f and g are nonnegative functions. 

 

Big „oh‟ (O) : The function f(n) = O (g(n)) [Read as “f of n is 

big oh of g of n”] iff (if and only if) there exist positive 

constants c and n0 such that f(n) ≤ c * g(n) for all n, n ≥ n0. 

Example : 1)  The function 3n + 2 = O(n) as 3n + 2 ≤ 4n for all n ≥ 2 

2) 3n + 3 = O(n) as 3n + 3 ≤ 4n for all n ≥ 3. 

3) 100n + 6 = O(n) as 100n + 6 ≤ 101n for all n ≥ 6. 

4) 10n2 + 4n + 2 = O(n2) as 10n2 + 4n + 2 ≤ 11n2 for all n ≥ 5. 

5) 1000n2 + 100n - 6 = O(n2) as 1000n2 + 100n - 6 ≤ 1001n2  

for all n ≥ 100. 

6) 6 * 2n + n2 = O(2n) as 6 * 2n + n2 ≤ 7 * 2n for all n ≥ 4. 

Asymptotic Notation - Big „oh‟ (O) 



Asymptotic Notations (Ο, Ω, ϴ) 

Following seven computing times are common & we will use these 

throughout our syllabus. 

1. We use O(1) to mean a computing time that is a Constant. 

2. O(n) is called Linear. 

3. O(n2) is called Quadratic. 

4. O(n3) is called Cubic. 

5. O(2n) is called Exponential. 

6. Similarly we can use O(log n) to mean logarithmic and  

7. O(n log n) to mean linear logarithmic. 

 

The statement f(n) = O (g(n)) states only that g(n) is an upper 

bound on the value of f(n) for all n, n ≥ n0. 

 

0 



Asymptotic Notation - Omega (Ω) 

Omega (Ω) : The function f(n) = Ω (g(n)) [Read as “f of n is 

omega of g of n”] iff (if and only if) there exist positive 

constants c and n0 such that f(n) ≥ c * g(n) for all n, n ≥ n0. 

Example : 1)  The function 3n + 2 = Ω (n) as 3n + 2 ≥ 3n for all n ≥ 1. 

2) 3n + 3 = Ω (n) as 3n + 3 ≥ 3n for all n ≥ 1. 

3) 100n + 6 = Ω (n) as 100n + 6 ≥ 100n for all n ≥ 1. 

4) 10n2 + 4n + 2 = Ω (n2) as 10n2 + 4n + 2 ≥ n2 for all n ≥ 1. 

5) 6 * 2n + n2 = Ω (2n) as 6 * 2n + n2 ≥ 2n for all n ≥ 1. 

 

As in the case of the big oh notation, there are several function 

g(n) for which f(n) = Ω (g(n)). 

The function g(n) is only a lower bound of f(n). 



Asymptotic Notation - Theta (ϴ) 

Theta (ϴ) : The function f(n) = ϴ (g(n)) [Read as “f of n is 

theta of g of n”] iff (if and only if) there exist positive constants 

c1, c2, and n0 such that  

 c1 * g(n) ≤ f(n) ≤ c2 * g(n) for all n, n ≥ n0. 

Example : 1)  The function 3n + 2 = ϴ (n) as 3n + 2 ≥ 3n for all n ≥ 2 

and 3n + 2 ≤ 4n for all n ≥ 2, so c1=3, c2=4 and n0=2 

2) 3n + 3 = ϴ (n). 

3) 10n2 + 4n + 2 = ϴ  (n2). 

4) 6 * 2n + n2 = ϴ (2n). 

5) 10 * log n + 4 = ϴ (log n) 

The Theta notation is more precise than both the Big oh & Omega 

notations. 

The function f(n) = ϴ (g(n)) iff g(n) is both an upper and lower 

bound of f(n). 



Asymptotic Notations –  

Little „oh‟ (o) & Little omega (ꞷ) 

Little „oh‟ (o) : The function f(n) = o (g(n)) [Read as “f of n is 

little oh of g of n”] iff (if and only if) 

   𝒍𝒊𝒎
𝒏→∞

 
𝒇(𝒏)

𝒈(𝒏)
 = 0 

Example : 1)  The function 3n + 2 = o (n2) since 𝒍𝒊𝒎
𝒏→∞

 
𝟑𝒏+𝟐

𝒏𝟐  = 0 

   Even 3n + 2 = o (n log n) 

2) 6 * 2n + n2 = o (3n)  even   6 * 2n + n2 = o(2n log n) 

 

Little omega (ꞷ) : The function f(n) = ꞷ (g(n)) [Read as “f of 

n is little omega of g of n”] iff (if and only if) 

   𝒍𝒊𝒎
𝒏→∞

 
𝒈(𝒏)

𝒇(𝒏)
 = 0 

 



Asymptotic Complexity of Sum Algorithm 

Let us reexamine the time complexity analyses of Sum, RSum & 

Add (Matrix Addition) algorithms. 

For Sum algorithm we determined that  

  tSum(n) = 2n + 3, so tSum(n) = ϴ (n)  

For RSum algorithm, tSum(n) = 2n + 2 = ϴ (n)  

Statement s/e Frequency Total 

1.    Algorithm Sum (a, n) 

2.    { 

3.       s := 0.0; 

4.       for i := 1 to n do 

5.        s := s + a[ i ]; 

6.        return s; 

7.    } 

0 

0 

1 

1 

1 

1 

0 

- 

- 

1 

n+1 

n 

1 

- 

ϴ (0) 

ϴ (0) 

ϴ (1) 

ϴ (n) 

ϴ (n) 

ϴ (1) 

ϴ (0) 

Total     ϴ (n) 



Asymptotic Complexity of RSum Algo. 

Although we might see that the Ο, Ω, ϴ notations have been used 

correctly, do we first need to find exact step count? 

The answer to this question is that the Asymptotic Complexity can 

be determined easily without determining the exact step count. 

This is usually done by first determining the Asymptotic Complexity 

of each statement & adding these complexities. 

Statement s/e 
Frequency 

n =0      n>0 

Total Steps 

n =0        n>0 

1. Algorithm RSum (a, n) 

2.  { 

3.    if (n <= 0) then 

4.      return 0.0; 

5.    else  

6.     return RSum(a, n-1)+a[ n ]; 

7.  } 

0 

0 

1 

1 

0 

1+x 

0 

- 

- 

1 

1 

- 

0 

- 

- 

- 

1 

0 

- 

1 

- 

0 

0 

1 

1 

0 

0 

0 

ϴ (0) 

ϴ (0) 

ϴ (1) 

ϴ (0) 

ϴ (0) 

ϴ (1+x) 

ϴ (0) 

Total     2 ϴ (1+x) 

x = tRSum (n-1) 



Asymptotic Complexity of Matrix Addition Algo. 

Although the analyses are carried out in terms of step counts, 

it is correct to interpret tP (n) = Ο (g (n)), tP (n) = Ω (g (n)), or 

tP (n) = ϴ (g (n)) as a statement about computing time of 

algorithm P. 

This is so because each step takes on ϴ (1) time to execute. 

Statement s/e Frequency Total 

1. Algorithm Add(a, b, c, m, n) 

2. { 

3.  for i := 1 to m do 

4.    for j := 1 to n do 

5.        c [i, j] := a [i, j] + b [i, j]; 

6.  } 

0 

0 

1 

1 

1 

0 

- 

- 

ϴ (m) 

ϴ (mn) 

ϴ (mn) 

- 

ϴ (0) 

ϴ (0) 

ϴ (m) 

ϴ (mn) 

ϴ (mn) 

ϴ (0) 

Total     ϴ (mn) 



Next - Unit II 

Disjoint Sets 

Divide and 

Conquer 


